详解IGBT驱动系统方案
压降,而不使保护电路动作。
当电路发生过流和短路故障时,V1上的uce上升,a点电压随之上升,到一定值时,VZ1击穿,VT1开通,b点电压下降,电容C1通过电阻R1充电,电容电压从零开始上升,当电容电压上升到约1.4V时,晶体管VT2开通,栅极电压uge随电容电压的上升而下降,通过调节C1的数值,可控制电容的充电速度,进而控制uge的下降速度;当电容电压上升到稳压二极管VZ2的击穿电压时,VZ2击穿,uge被钳位在一固定的数值上,慢降栅压过程结束,同时驱动电路通过光耦输出过流信号。如果在延时过程中,故障信号消失了,则a点电压降低,VT1恢复截止,C1通过R2放电,d点电压升高,VT2也恢复截止,uge上升,电路恢复正常工作状态。
IGBT开关过程中的过电压
关断IGBT时,它的集电极电流的下降率较高,尤其是在短路故障的情况下,如不采取软关断措施,它的临界电流下降率将达到数kA/μs。极高的电流下降率将会在主电路的分布电感上感应出较高的过电压,导致IGBT关断时将会使其电流电压的运行轨迹超出它的安全工作区而损坏。所以从关断的角度考虑,希望主电路的电感和电流下降率越小越好。但对于IGBT的开通来说,集电极电路的电感有利于抑制续流二极管的反向恢复电流和电容器充放电造成的峰值电流,能减小开通损耗,承受较高的开通电流上升率。一般情况下IGBT开关电路的集电极不需要串联电感,其开通损耗可以通过改善栅极驱动条件来加以控制。
IGBT的关断缓冲吸收电路
为了使IGBT关断过电压能得到有效的抑制并减小关断损耗,通常都需要给IGBT主电路设置关断缓冲吸收电路。IGBT的关断缓冲吸收电路分为充放电型和放电阻止型。充放电型有RC吸收和RCD吸收2种。如图6所示。
图6 充放电型IGBT缓冲吸收电路
RC吸收电路因电容C的充电电流在电阻R上产生压降,还会造成过冲电压。RCD电路因用二极管旁路了电阻上的充电电流,从而克服了过冲电压。
?
图7 三种放电阻止型吸收电路
图7是三种放电阻止型吸收电路。放电阻止型缓冲电路中吸收电容Cs的放电电压为电源电压,每次关断前,Cs仅将上次关断电压的过冲部分能量回馈到电源,减小了吸收电路的功耗。因电容电压在IGBT关断时从电源电压开始上升,它的过电压吸收能力不如RCD型充放电型。
从吸收过电压的能力来说,放电阻止型吸收效果稍差,但能量损耗较小。对缓冲吸收电路的要求是:
1. 尽量减小主电路的布线电感La;
2. 吸收电容应采用低感吸收电容,它的引线应尽量短,最好直接接在IGBT的端子上;
3. 吸收二极管应选用快开通和快软恢复二极管,以免产生开通过电压和反向恢复引起较大的振荡过电压。
结语
本文对IGBT的驱动和保护技术进行了详细的分析,得出了设计时应注意几点事项:
1. IGBT由于有集电极-栅极寄生电容的密勒效应影响,能引起意外的电压尖峰损害,所以设计时应让栅极电路的阻抗足够低以尽量消除其负面影响。
2. 栅极串联电阻和驱动电路内阻抗对IGBT的开通过程及驱动脉冲的波形都有很大影响。所以设计时应综合考虑。
3. 应采用慢降栅压技术来控制故障电流的下降速率,从而抑制器件的dv/dt和uce的峰值,达到短路保护的目的。
4. 在工作电流较大的情况下,为了减小关断过电压,应尽量减小主电路的布线电感,吸收电容器应采用低感型。
- DSP在LED大屏显示中的应用(03-14)
- DSP在LED显示中的应用(08-21)
- 基于μC/OS2II的LED显示屏控制器(08-14)
- 基于DSP的LED大屏幕显示系统(10-03)
- 基于单片机的彩灯设计方案(10-29)
- 基于μC/OS-II及Nios II的多窗口显示屏控制器的设计与实现(01-23)