微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 健康监护正在走向可穿戴设备的一些解决方案

健康监护正在走向可穿戴设备的一些解决方案

时间:10-29 来源:互联网 点击:

动。其中一种是光学方法,即使用多个LED波长。共模信号表示运动,而差分信号用来检测心率。但是,最好是使用真正的运动传感器。这不仅可以准确测量施加到可穿戴设备的运动,还可用于提供其他功能,例如跟踪活动、计算步数或者在检测到特定重力时启动某个应用。

ADXL362是一款微功耗、3轴MEMS(微机电系统)加速度计,非常适合在电池供电型可穿戴应用中检测运动。其1 2位ADC可将加速度转换为数字信号,分辨率为1-mg。功耗随采样速率动态变化,当输出数据速率为100Hz时功耗仅为1.8μA,在400Hz时为3.0μA。这些较高的数据速率对于用户接口来说非常有用,例如单击/双击检测。

对于在检测到运动时启动某个应用的情况,则无需进行高速采样,因此可将数据速率降至6Hz,此时平均功耗为300nA。因而,对于低功耗应用和不易更换电池的植入式设备来说,此传感器非常有吸引力。ADXL362采用3.0mm×3.25mm封装。图3显示了在不同的电源电压的条件下,电源电流与输出数据速率之间的关系。

系统中各传感器的连接

系统的核心是混合信号片上计量仪ADuCM350,它与所有传感器相连,并负责运行必要的软件,以及储存、显示或传送结果。该器件集成了高性能模拟前端(AFE)和16MHz ARM Cortex-M3处理器内核,如图4所示。AFE的灵活性和微处理器丰富的功能组合使此芯片成为便携式应用和可穿戴应用的理想选择。可配置的AFE支持几乎所有传感器,其可编程波形发生器可使用交流或直流信号为模拟传感器供电。高性能的接收信号链会对传感器信号进行调理,并使用积分非线性(INL)和差分非线性(DNL)最大值为±1LSB的无丢码真16位160kSPS ADC将这些信号数字化。该接收信号链支持任何类型的输入信号,包括电压、电流、恒电势、光电流和复阻抗。

AFE 可在独立模式下工作, 无需Cortex-M3处理器干预。可编程时序控制器控制测量引擎,测量结果通过DMA储存到存储器内。开始测量前,可执行校准程序,以校正发送和接收信号链中的失调和漂移误差。对于复阻抗测量,如血糖、体质指数(BMI)或组织鉴别应用,内置DSP加速器可实现2048点单频离散傅里叶变换,而无需M3处理器干预。这些高性能AFE功能使ADuCM350具有其他集成解决方案无可比拟的独特优势。

Cortex处理器支持多种通信端口,包括I2S、USB、MIPI和LCD显示驱动器(静态)。此外,它还包括闪存、SRAM和EEPROM,并且支持五种不同的电源模式,可最大程度地延长电池使用寿命。

ADuCM350设计用于超低功耗传感器,性能限制为低速器件。对于要求更高处理能力的应用,可使用工作频率高达80MHz的M3内核或者Cortex-M4处理器内核。

功耗如何?

功耗一直是便携式设备和可穿戴设备的一个关键因素。本文介绍的器件针对高性能、小尺寸和低功耗要求而设计,但在小封装内集成所有一切器件(包括电池)仍然是一个挑战。尽管新的电池技术实现了每mm3更高的容量,但与电子产品相比,电池体积仍然较大。

能量采集可减小电池尺寸并延长电池使用寿命。能量采集技术有多种,包括热电、压电、电磁和光电等技术—对于可穿戴设备,利用光和热最为合适。传感器通常不会产生大量输出功率,因此每焦耳热量都应当可以被捕获和使用。ADP5090超低功耗升压调节器(如图5)将采集器和电池桥接起来。此高效的开关电源可将输入电压从低至100mV升高到3V。冷启动期间,在电池完全放电的情况下,需要的最小输入电压为380mV,但在正常工作时,如果电池电量没有完全耗尽或者还有一些电能留在超级电容内,任何低至100mV的输入信号都可转换为较高的电位并储存下来,以供稍后使用。

该芯片采用微型3mm×3mm封装,可进行编程来支持各种不同的能量采集传感器。其最大静态电流为250nA,支持几乎所有电池技术—从锂离子电池到薄膜电池以及超级电容均可。集成式保护电路可确保安全运行。

小结

本文介绍了一些用于可穿戴和个人健康应用的低功耗产品,但是这个快速增长的市场正在快速变化。ADI公司的技术可以将这些颇具挑战性的难题转变为完善的产品和完整的解决方案。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top