微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 综合文库 > 微波烧结技术研究现状

微波烧结技术研究现状

时间:12-26 来源:mwrf 点击:

引言

微波与无线电、红外线、可见光一样都是电磁波,只不过微波是一种高频电磁波,其频率范围为0.3~300GHz,波长为1mm~1m。微波加热技术源于第二次世界大战,当时美国负责维修雷达的工程师经常发现口袋里的巧克力会熔化掉,这才意识到电磁波对物质有加热、干燥的作用,因而引发了人们对这项技术的研究[1]。微波烧结是一种材料烧结工艺的新方法,与常规烧结相比,它具有升温速度快、能源利用率高、加热效率高和安全卫生无污染等特点,并能提高产品的均匀性和成品率,改善被烧结材料的微观结构和性能。21 世纪随着人们对纳米材料研究的重视,该技术在制备纳米块体金属材料和纳米陶瓷方面具有很大的潜力[2 ],该技术被誉为"21 世纪新一代烧结技术"。

微波烧结技术工作原理

微波烧结是利用微波具有的特殊波段与材料的基本细微结构耦合而产生热量,材料的在电磁场中的介质损耗使其材料整体加热至烧结温度而实现致密化的方法。微波烧结原理与目前的常规烧结工艺有着本质区别[35 ]。由于材料可内外均匀地整体吸收微波能并被加热,使得处于微波场中的被烧结物内部的热梯度和热流方向与常规烧结时完全不同。微波可以实现快速均匀加热而不会引起试样开裂或在试样内形成热应力,更重要的是快速烧结可使材料内部形成均匀的细晶结构和较高的致密性,从而改善材料性能。同时,由于材料内部不同组分对微波的吸收程度不同,因此可实现有选择性烧结,从而制备出具有新型微观结构和优良性能的材料。

在微波烧结炉中采用微波发生器来代替传统的热源,它与传统技术相比较,属于两种截然不同的加热方式。微波介质进行加热,化学原料一旦放入微波电场中,其中的极性分子和非极性分子就引起极化,变成偶分子。按照电场方向定向,由于该电场属于交变电场,所以偶极子便随着电场变化而引起旋转和震动,例如频率为2.45GHz,以每秒24亿5千万次的旋转和震动,产生了类似于分子之间相互摩擦的效应,从而吸收电场的能量而发热,物体本身成为发热体。当用传统方式加热时,点火引燃总是从样品表面开始,燃烧从表面向样品内部传播最终完成烧结反应。而采用微波辐射时,情况就不同了。由于微波有较强的穿透能力,它能深入到样品内部,首先使样品中心温度迅速升高达到着火点并引发燃烧合成。烧结波沿径向从里向外传播,这就能使整个样品几乎是均匀地被加热,最终完成烧结反应。微波点火引燃在样品中产生的温度梯度(dT,dt)比传统点火方式小得多。即微波烧结过程中烧结波的传播要比传统加热方式均匀得多。

\

图1  微波烧结设备结构图[6 ]

微波烧结技术优点[7 ]
1. 烧结温度大幅度降低,与常规烧结相比,最大降温幅度可达500 ℃左右。
2. 比常规烧结节能70 %~90 % ,降低烧结能耗费用。由于微波烧结的时间大大缩短,尤其对一些陶瓷材料烧结过程从过去的几天甚至几周降低到用微波烧结的几个小时甚至几分钟,大大得高了能源的利用效率。
3. 安全无污染。微波烧结的快速烧结特点使得在烧结过程中作为烧结气氛的气体的使用量大大降低,这不仅降低了成本,也使烧结过程中废气、废热的排放量得到降低。
4. 使用微波法快速升温和致密化可以抑制晶粒组织长大,从而制备纳米粉末、超细或纳米块体材料[8 ]
5. 烧结时间缩短,相对于传统的辐射加热过程致密化速度加快,材料内外同时均匀加热,这样材料内部热应力可以减少到最小。其次在微波电磁能作用下,材料内部分子或离子的动能增加,使烧结活化能降低,扩散系数提高,可以进行低温快速烧结,使细粉来不及长大就被烧结。
6. 能实现空间选择性烧结[9- 10]

微波烧结发展史

材料的微波烧结开始于20世纪60年代中期,W.R.Tinga[11]首先提出了陶瓷材料的微波烧结技术;到20世纪70年代中期,法国的J.C.Badot和A.J.Berteand[12]开始对微波烧结技术进行系统研究。20世纪80年代以后,各种高性能的陶瓷和金属材料得到了广泛应用,相应的制备技术也成了人们关注的焦点,微波烧结以其特有的节能、省时的优点,得到了美国、日本、加拿大、英国、德国等发达国家的政府、工业界、学术界的广泛重视,我国也于1988年将其纳入"863"计划。在此期间,主要探索和研究了微波理论、微波烧结装置系统优化设计和材料烧结工艺、材料介电参数测试,材料与微波交互作用机制以及电磁场和温度场计算机数值模拟等,烧结了许多不同类型的材料。

20世纪90年代后期,微波烧结已进入产业化阶段,美国、加拿大、德国等发达国家开始小批量生产陶瓷产品。其中,美国已具有生产微波连续烧结设备的能力。国

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top