ARM应用系统开发详解:第3章 ARM微处理器的指令系统
3.1ARM微处理器的指令集概述
3.1.1ARM微处理器的指令的分类与格式
助记符
指令功能描述
ADC
带进位加法指令
ADD
加法指令
AND
逻辑与指令
B
跳转指令
BIC
位清零指令
BL
带返回的跳转指令
BLX
带返回和状态切换的跳转指令
BX
带状态切换的跳转指令
CDP
协处理器数据操作指令
CMN
比较反值指令
CMP
比较指令
EOR
异或指令
LDC
存储器到协处理器的数据传输指令
LDM
加载多个寄存器指令
LDR
存储器到寄存器的数据传输指令
MCR
从ARM寄存器到协处理器寄存器的数据传输指令
MLA
乘加运算指令
MOV
数据传送指令
MRC
从协处理器寄存器到ARM寄存器的数据传输指令
MRS
传送CPSR或SPSR的内容到通用寄存器指令
MSR
传送通用寄存器到CPSR或SPSR的指令
MUL
32位乘法指令
MLA
32位乘加指令
MVN
数据取反传送指令
ORR
逻辑或指令
RSB
逆向减法指令
RSC
带借位的逆向减法指令
SBC
带借位减法指令
STC
协处理器寄存器写入存储器指令
STM
批量内存字写入指令
STR
寄存器到存储器的数据传输指令
SUB
减法指令
SWI
软件中断指令
SWP
交换指令
TEQ
相等测试指令
TST
位测试指令
3.1.2指令的条件域
当处理器工作在ARM状态时,几乎所有的指令均根据CPSR中条件码的状态和指令的条件域有条件的执行。当指令的执行条件满足时,指令被执行,否则指令被忽略。
每一条ARM指令包含4位的条件码,位于指令的最高4位[31:28]。条件码共有16种,每种条件码可用两个字符表示,这两个字符可以添加在指令助记符的后面和指令同时使用。例如,跳转指令B可以加上后缀EQ变为BEQ表示“相等则跳转”,即当CPSR中的Z标志置位时发生跳转。
在16种条件标志码中,只有15种可以使用,如表3-2所示,第16种(1111)为系统保留,暂时不能使用。
表3-2指令的条件码
条件码
助记符后缀
标志
含义
0000
EQ
Z置位
相等
0001
NE
Z清零
不相等
0010
CS
C置位
无符号数大于或等于
0011
CC
C清零
无符号数小于
0100
MI
N置位
负数
0101
PL
N清零
正数或零
0110
VS
V置位
溢出
0111
VC
V清零
未溢出
1000
HI
C置位Z清零
无符号数大于
1001
LS
C清零Z置位
无符号数小于或等于
1010
GE
N等于V
带符号数大于或等于
1011
LT
N不等于V
带符号数小于
1100
GT
Z清零且(N等于V)
带符号数大于
1101
LE
Z置位或(N不等于V)
带符号数小于或等于
1110
AL
忽略
无条件执行
3.2ARM指令的寻址方式
所谓寻址方式就是处理器根据指令中给出的地址信息来寻找物理地址的方式。目前ARM指令系统支持如下几种常见的寻址方式。
3.2.1立即寻址
立即寻址也叫立即数寻址,这是一种特殊的寻址方式,操作数本身就在指令中给出,只要取出指令也就取到了操作数。这个操作数被称为立即数,对应的寻址方式也就叫做立即寻址。例如以下指令:
ADDR0,R0,#1;R0←R0+1
ADDR0,R0,#0x3f;R0←R0+0x3f
在以上两条指令中,第二个源操作数即为立即数,要求以“#”为前缀,对于以十六进制表示的立即数,还要求在“#”后加上“0x”或“&”。
3.2.2寄存器寻址
寄存器寻址就是利用寄存器中的数值作为操作数,这种寻址方式是各类微处理器经常采用的一种方式,也是一种执行效率较高的寻址方式。以下指令:
ADDR0,R1,R2;R0←R1+R2
该指令的执行效果是将寄存器R1和R2的内容相加,其结果存放在寄存器R0中。
3.2.2寄存器间接寻址
寄存器间接寻址就是以寄存器中的值作为操作数的地址,而操作数本身存放在存储器中。例如以下指令:
ADD R0,R1,[R2];R0←R1+[R2]
LDRR0,[R1];R0←[R1]
STRR0,[R1];[R1]←R0
在第一条指令中,以寄存器R2的值作为操作数的地址,在存储器中取得一个操作数后与R1相加,结果存入寄存器R0中。
第二条指令将以R1的值为地址的存储器中的数据传送到R0中。
第三条指令将R0的值传送到以R1的值为地址的存储器中。
3.2.3基址变址寻址
基址变址寻址就是将寄存器(该寄存器一般称作基址寄存器)的内容与指令中给出的地址偏移量相加,从而得到一个操作数的有效地址。变址寻址方式常用于访问某基地址附近的地址单元。采用变址寻址方式的指令常见有以下几种形式,如下所示:
LDR R0,[R1,#4];R0←[R1+4]
LDR R0,[R1,#4]!;R0←[R1+4]、R1←R1+4
LDR R0,[R1],#4;R0←[R1]、R1←R1+4
LDR R0,[R1,R2];R0←[R1+R2]
在第一条指令中,将寄存器R1的内容加上4形成操作数的有效地址,从而取得操作数存入寄存器R0中。
在第二条指令中,将寄存器R1的内容加上4形成操作数的有效地址,从而取得操作数存入寄存器R0中,然后,R1的内容自增4个字节。
在第三条指令中,以寄存器R1的内容作为操作数的有效地址,从而取得操作数存
ARM微处理器指令系 相关文章:
- Windows CE 进程、线程和内存管理(11-09)
- RedHatLinux新手入门教程(5)(11-12)
- uClinux介绍(11-09)
- openwebmailV1.60安装教学(11-12)
- Linux嵌入式系统开发平台选型探讨(11-09)
- Windows CE 进程、线程和内存管理(二)(11-09)