微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 综合文库 > 宽频轻质吸波涂料的研究与应用进展

宽频轻质吸波涂料的研究与应用进展

时间:06-05 来源:涂料与涂装资讯网 点击:

(-25dB,10min,-37dB,35min);同样,共混加工时间相同,配比不同,则反射率R也不相同,这说明PAn含量及分布、掺杂剂含量及共混加工时间和工艺条件等都会显著影响导电高分子橡胶贴片材料的吸波性能。采用热压成型技术制备(PAn/EPDM)复合共混物橡胶吸波贴片,弓形法测试(航天一院621研究所)表明,在2~18GHz频段可设计制作轻质、宽频导电高__分子聚苯胺吸波贴片,平均吸收可达到-10dB,且具有明显的宽频效应。同时,采用原位共混复合技术可制备无机导电高分子纳米复合微波吸收材料,将具有金属磁性损耗的超细羰基铁颗粒(纳米-亚微米)与导电高分子材料复合而形成一种新型轻质、宽频、强吸收、涂层薄的涂层吸波材料使用。导电高分子磁性纳米复合吸波材料由于集功能性导电高分子材料的特性与纳米磁性粒子的特性于一身,具有性质多样、应用面广等特点,而成为吸波材料领域一个重要的研究方向。因此,不同掺杂态的导电高分子微波吸收材料可作为智能型宽频雷达吸收剂材料在民用吸波材料和军事隐身材料中获得广泛和重要的应用。

    5.新型轻质雷达吸波材料

    5.1 空心微珠吸波材料

    近年来,国外对空心微珠开展了较多研究,美国以3μm左右玻璃球为载体,镀上以Ni、Al、W等为损耗层的10nm左右薄膜。当采用厚度为2nm的球形多层颗粒膜、在8~18GHz频率范围厚度为2.5mm时,吸收率可达-20dB。徐坚等采用化学镀法,以AgNO3取代PdC12作为活性剂,利用H2PO2的还原性完成活化过程,制备了NiCoP合金包覆的空心微珠粉末,SEM分析表明NiCoP合金包覆在空心微珠表面。葛凯勇等利用化学镀镍对空心微珠表面进行镀镍改性,改性后的微珠表面均匀地附着金属镍,用其制备的吸波材料在16.6~18.0GHz波段吸收率小于-10dB,最大吸收率可达-13dB。

    5.2 碳纳米管吸波材料

    碳纳米管表现出优良的吸波性能,同时具有质量轻、兼容性好、吸波频带宽等特点,是新一代最具发展潜力的吸波材料。沈增民等用竖式炉浮游法制备的碳纳米管的外径为40~70nm,内径为7~10nm,长度为50~1000μm,碳纳米管呈直线状,用化学镀方法在碳纳米管的表面镀上一层均匀的过渡金属镍。碳纳米管吸波涂层在厚度为0.97mm时,在8~18GHz,反射率小于-10dB的频宽为3.0GHz,反射率小于-5dB的频宽为4.7GHz。镀镍碳纳米管吸波涂层在厚度为0.97mm时,反射率小于-10dB的频宽为2.23GHz,反射率小于-5dB的频宽为4.6GHz。曹茂盛等添加质量分数为8%的碳纳米管的吸波材料在8~40GHz波段有明显的吸收。随着材料厚度的增加,吸收峰移到14GHz,吸收峰向低频移动。厚度为5.5mm的吸波试样,对应于频率为10GHz的反射率为-8dB。碳纳米管良好的吸波特性,意味着可以设计出既吸收厘米波又吸收毫米波的雷达波吸收材料。刘云芳等采用竖式催化裂化解法制备出碳纳米管,然后采用KOH进行活化,使碳纳米管的比表面积从24.5m2/g提高到360.1m2/g,而且碳纳米管的各种类型的空结构都得到增加;微波吸收性能的研究表明,采用KOH进行活化碳纳米管的吸收性能优于未活化碳纳米管的吸收性能,活化还可以使碳纳米管的微波吸收能力加强、吸收频率宽化。

    5.3 导电高聚物吸波材料

    自20世纪90年代开始,美、法、日等国相继开展了导电高聚物雷达吸收材料的研究,设想将其作为未来隐身战斗机及侦察机的“灵巧蒙皮”及巡航导弹头罩上的可逆智能隐身材料等。法国Iaruent研究了聚吡咯、聚苯胺、聚-3-辛基噻吩在0~20GHz内的雷达波吸收性能,发现吸波性能随雷达波频率变化而变化,平均衰减值为-8dB,最大衰减值可达到-36.5dB,且频宽为3.0GHz。Wong等人成功地用化学氧化法在纸基质上制备大面积的聚吡咯膜,该膜具有很好的柔韧性,在雷达波X波段表现了极好的吸收性能和宽频吸收特性,材料阻抗和吸波特性随频率和入射角的变化而变化。Franchitto等人利用十二烷基苯磺酸掺杂的聚苯胺与乙丙橡胶共混制成的复合材料,厚度3mm,在X波段反射率低于-6dB,峰值达到-15dB。导电高聚物作为一种新型的吸波材料,具有质量轻、力学性能好、组成与结构容易控制、导电率变化范围很宽等特性,在电磁波吸收方面显示出很强的设计适应性。在较早的研究中表明,单独的导电聚合物材料吸收频带较窄,为适应未来的隐身材料高效、宽带、质量轻、适应性强的特点,还需改善导电高聚物的磁损耗性能。Pant等人发现可以将导电高聚物与无机磁损耗物质复合来提高导电

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top