微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 通信网络底层知识 ,你能get 几个?

通信网络底层知识 ,你能get 几个?

时间:08-04 来源:RF技术社区 点击:

率、拨号音和忙音等的频率和持续、间隔时间等一系列终端和交换设备必须遵守的规定。

OSI七层:物理层、数据链路层、网络层、传输层、会话层、表示层、应用层

TCP/IP四层:网络接口层(HDLC)、网络层(选择适当路由和交换节点,使数据透明地传输到目的地IP,IPX)、传输层(TCP/UDP)、应用层(HTTP、SMTP、FTP)

以太网:局域网的典型代表。星形结构,中心是集线器

集线器分两大类:转发网络集线器(将某一台设备上发送的信号转发给所有其他连接的设备,目标设备选择接收,非目标设备选择放弃)和开关网络集线器(只向目标网络集线器发送信号)

光纤电缆分两种:单模光缆(直径短,带宽高,但连接困难,一般用于远距离传输)和多模光缆(一般用于局域网)

以太网中,数据是以帧为单位进行交换的,这里必须提到的一个技术是CSMA/CD带碰撞检测的载波侦听多址访问,即任何设备在发送数据前先确认网络是否忙碌,只有空闲状态下才发送信息,但是这里有个问题,如果两台机器同时判定空闲,同时发送信息就会引发冲突从而导致数据包毁坏,解决办法是确认空闲后等待一个随机决定的时间重新发送,这样随机数小的网络设备先发送,这个随机决定的时间叫做补偿时间。根据网络的拥挤程度,可以调整最大补偿时间值,当较为拥挤时扩大它的值,相反则可以减小之。

以太网中的帧,即数据包包含两部分,报头和报文,类似于信封和信件内容,信封理所当然包含接收端和发送端的地址,以及监督码,报文则是有效信息内容。最开始是64位的前同步码(56位1010101010.。。)和帧首界定符(8位10101011),随后接收端mac址(48位,全部为1时表示广播址,即对所有相连设备发送)和发送端mac址(48位),类型字段(16位,上层协议),数据(最大12000位)和错误检验校正码(32位)。

蜂窝网:移动通信网典型代表,1981年瑞典爱立信在北欧建立第一个蜂窝网。蜂窝网中每个小区域用一个六边形包含,这样的优点是可以无缝覆盖整个区域同时单位区域也接近圆形,在微波频段附近,电磁波仅在视距范围内传播,距离较远时使用同一频段相互之间没有影响,为保证安全性,相邻两个单元不使用同一频段,即便这样,也可以极大的复用频段,当用户激增时,可以减小服务半径(降低基站天线高度和发射功率)进一步复用频段。

蜂窝网的缺陷是要求每个单元的中心建一个电台,即基站,理论上讲可以无缝的覆盖全球,但沙漠、海洋、山区是不大可能建立蜂窝网的,因此未来的希望可能是卫星移动通信网,典型代表是"铱"系统,它实现了全球覆盖,但如要提升性能则需要更高的技术,添加卫星、降低高度、提升速率等。

二、通信发展史(三代)及其主要特征


第一代:模拟通信,主要特征为频分多址技术

英文名称:frequency-division multiple access;

FDMA 定义:利用不同的频率分割成不同信道的多址技术

这种通信系统的基站必须同时发射和接收多个不同频率的信号;任意两个移动用户之间进行通信都必须经过基站的中转,因而必须同时占用4个频道才能实现双工通信。不过,移动台在通信时所占用的频道并不是固定指配的,它通常是在通信建立阶段由系统控制中心临时分配的,通信结束后,移动台将退出它占用的频道,这些频道又可以重新给别的用户使用。

第二代:数字通信,主要特征为时分多址技术和码分多址技术

time division multiple access 简称tdma

原理就是时分复用,把信息按帧传输,每一帧分多个时隙(比如32个),每个时隙为一个特定用户传输信号。

随着通信网发展,时分复用设备的各路输入信号不再是单路模拟信号,在通信网中又多次多重复用,低层次复用信号经过整合再次复用构成高层复用信号,这个过程称为复接。

code division multiple access 即cdma

它不同于时分复用技术和频分复用技术,而是利用不同的如波形类特征来区分子信道,引用以前看到的网友的一个比方,一群人在一个大房子里,如果他们用一样的语言(波形)一起说话,我们就很难区分哪些信息是要接受的,但是如果他们使用不同的语言说话,我们就能够过滤掉那些不感兴趣的信息,这便是cdma的基础,因此不需要分频段或是时隙就可以同时传输多路信号,提升了信道利用率,进一步提升了传输速率。

数字通信相对于模拟通信有很多好处,主要是抗干扰能力强、传输差错可控、安全性高等,但数字通信有一个缺点就是一般需要较大的传输带宽,以电话为例,一路模拟通话只占用4kHz带宽,但一路接近同样话音质量的数字电话要占据20~60kHz带宽。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top