微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 通信网络底层知识 ,你能get 几个?

通信网络底层知识 ,你能get 几个?

时间:08-04 来源:RF技术社区 点击:

对点通信,其他应用较少。

SSB一般用于频分多路复用系统,带宽利用和功率利用都较好。

VSB抗噪声性能与频带利用率与SSB相当,一般用于电视广播系统。

AM是最简单的调制方式,但抗干扰能力差,功率利用率低,一般用于中短波调幅广播。

FM抗干扰能力强,在长距离高质量通信中常用,如卫星通信、调频广播电台等。

数字调制与模拟调制基本原理相同,但数字信号具有取值离散的特点,一般有两种数字调制技术方法,一是用模拟调制的方法调制数字信号,将数字信号视为待调制信号的一个特例;而是使用键控法(2ASK,2FSK,2PSK)。

模拟信号的数字化:抽样、量化、编码。其中量化分为均匀量化和非均匀量化,对小信号而言,信噪比较小,均匀量化并不科学,例如话音信号,因此有了A律和u律等非均匀量化法。我国采用的是A律13折线。美国日本使用的是u律。

以A律13折线为例简要介绍编码方法,13折线法8位,c1位表示正负,c2~c4位表示8个非均匀划分的段落,c5~c8表示16个均匀量化的电平。

按照加性干扰引起的错吗分布规律不同,信道分为三类:随机信道、突发信道、混合信道

随机信道:错码随机出现,相互统计独立

突发信道:错码集中出现,在一些短暂的时间片上集中,之后又存在较长的无错码段

混合信道:上面二者共存的信道

四种主要差错控制技术:

1 检错重发:在发送时附加监督码元,接收端利用这些码元检测到有错时,通知发送端重发,它的局限是不能判断错码位置以及如何纠正,如奇偶校验。

2 前向纠错(FEC:forward error correction):能纠正错码,优点是不需重发,没有因反复重发引发的时延。

3 检错删除:即以码元为单位,发现错误码元即删除,这种方式使用于少数特定系统,那些即使删除部分码元不影响接受的系统。

4 反馈校验:无需差错码元或监督码元,接收端接到码元后回发给发送端,在发送端进行比较,如一致则认为无错,否则重发。这种技术优点是简单易理解,缺点是需要双向信道且传输时间翻倍,且有可能发送过来时无错回发时出错也被判错,降低了传输效率。

在评价信道的检错能力时有一个矛盾点,即检错能力与冗余度(监督码元数目与总码元数目之比)的矛盾,一般来讲,检错能力越强,需要越多的监督码元,冗余度也越高,作选择时应根据具体情况取舍。

四个同步:

1 载波同步:即在接收端产生一个和接收信号的载波同频同相的本地震荡,供解调器使用。

2 码元同步:即在接收端产生一个与接收码元严格同步的时钟脉冲序列,确定接收码元的起止时刻,以便判决。

3 群同步:即帧同步,即在发送端插入辅助同步信息,确定帧接收的起止时刻。

4 网同步:在多个通信对象组成的数字通信网中,为了使各站点保持同步,还需解决网同步的问题。例如时分复用通信网中,为了正确地将来自不同地点的两路时分多路信号复接时,就需使各路信号同步后开始合并。

有线通信和无线通信:

1 理论上讲,无线通信速率要优于有线通信,无线通信介质是空气或真空,传输速率接近光速,有线通信是不可能达到的,一来介质的限定,而来不可能实现直线传播。假若实现月亮和地球的点对点通信,无线通信必须建立中继站,否则月球背对我们的时候是无法通信的

2 有线通信开通必须架设电缆,面临挖沟和架线的问题,时间成本和材料、人力成本较高,另外,除电信部门外,其他部门没有在城区内挖沟铺设电缆的权力,相比之下,搭建无线通信系统成本更低

另外时间成本优势在应急、抗灾时的无可替代性将被凸显

3 有线通信系统的通信质量会随着线路扩展急剧下滑,超过5公里后误码率提升,传输速率下降,而对于无线扩频通信(扩展带宽)方式,50公里内几乎没有影响

4 有线通信铺线受地理限制,不能任意铺设,无线通信覆盖范围广,几乎不受地理条件限制

5 在后续改善通信方面,无线通信仅需架设扩频设备,而有线通信光缆深埋地底下,灵活性极低

6 当出现故障时,有线网络需沿线检查,难以及时找出故障点,而无线扩频通信很容易试出故障点,维护扩频电台即可,可快速恢复通信。

7 安全方面,无线电路可能被搭线监听,而无线扩频通信本身就起源于军事上的防监听,广袤的频带大大提升了监听的难度。

综上,无线通信在时间、财力、人力上的低成本,安全性、灵活性、可维护性等方面具有很大优势。有线通信目前的优势在于媒介的限定提升了稳定性、减少了对人体辐射。无线通信信号较差原因在于母机与子机之间可能存在障碍物,而高频无线信号的衍射能力是比较弱的;此外也有

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top