如何使用巴伦测量相位噪声?
巴伦(平衡-不平衡转换器)通常被用于测量差分时钟和计时器的相位噪声。虽然看似简单易用,但是巴伦在测量中的作用相当复杂,不知不觉地会给测量结果引入器件误差。本文介绍了这些器件误差,讨论了其产生的原因和消除误差的方法。并给出了精确测量相位噪声时所用巴伦的选型建议。
差分时钟信号在数据通信、无线、仪器和医疗等领域被广泛应用。差分信号使用双导体传输线,理论上每条导线上信号幅度相等但是相位相反,如LVPECL、LVDS和CML。和单端信号相比,导线上的差分信号电压波幅更小,故可工作在更高频率。在供电电源条件相同时,差分信号的电压波幅可以比单端信号更大,从而提高了差分信号的信噪比。
差分信号可以抑制共模噪声,因此在嘈杂噪声环境中表现更好。此外,差分信号计时更加精确,是因为和单端信号相比,差分信号的交叉位置更容易控制(取决于电压超过某绝对参考电平)[1]。
相位噪声量化了信号的短期相位波动[2],无疑是重要计时应用中评估时钟和计时器件的最重要参数。相位噪声(和幅度噪声)可以使用频谱分析仪或者专用的相位噪声分析仪测量,但仪器只能进行单端测量。将器件的差分信号转为单端信号,需要有源探头,差分到单端放大器或者是无源巴伦。因为巴伦在测量中不引入放大噪声,适合于低噪声情况下的测量。宽带巴伦因为可以覆盖较宽的频率范围而备受喜爱。
本文探讨了如何使用巴伦测量差分时钟信号的相位噪声。首先讨论了巴伦在测量中可能引入的器件误差。给出的测量范例数据只为说明原理,并不代表典型情况或者最坏情况。实际上,巴伦对相位噪声数据有无影响、影响多少都是很难预测的。本文分析了多种影响测量的因素,例如巴伦的选型、待测器件类型、连接待测器件和巴伦的线缆和元器件等。介绍了判断巴伦是否影响相位噪声测量的试验方法。最后,给出了如何选择巴伦,并如何用它进行准确的相位噪声测量的建议。据笔者所知,本文是公开发表的第一篇关于巴伦如何测量相位噪声的文章。
巴伦入门
图1说明了巴伦在将平衡阻抗(即差分信号)转换为不平衡阻抗(即单端信号)时的作用。巴伦本身很容易使用,只需要三个连接(两个输入和一个输出)且无需供电。巴伦作为互易器件,两端都可以作为输入端。将单端信号转换成差分信号的巴伦叫分路器。当反过来使用时,被称为合路器。在正常模式下,理论上差分端口J2和J3输出等幅反相信号,不平衡端口J1通常和传输线进行阻抗匹配,一般为50欧姆。
图1:巴伦信号的流动和性能参数
巴伦的性能可以用几个关键指标表示[3]。幅度平衡性(单位dB)是不平衡端口到一个平衡端口的差分插入损耗和不平衡端口到另一个平衡端口的差分插入损耗之间的差值。相位平衡性(单位度)是差分端口之间差分相移的差值。插入损耗(单位dB)是——刨除信号分路导致的额定损失之外的——在信号通路上增加巴伦引起的额外信号功率损失。隔离度(单位dB)是信号从一个差分端口进入(如J2),从另一个差分端口流出(J3)时,两端口之间信号功率的比值。回波损耗(单位dB)或电压驻波比(VSWR)代表了巴伦与负载阻抗和源阻抗之间匹配的程度,一般为50欧姆。
最后,共模抑制比(CMRR)(单位dB)是共模增益对差模增益之比,反映了巴伦对于从平衡端口向不平衡端口传输的共模信号的衰减能力。基于矢量对消方法,可以根据幅度和相位平衡性计算出CMRR。
测量设置
如图2中a到d所示四种基本测量设置,使用高速实时示波器分析时钟信号的信号完整性,使用信号源分析仪测量其相位噪声[4]。虽然本研究分析了很多制造商的时钟器件,本文只列举两种待测器件(DUT)的结果以便说明关键发现。两种待测器件都是市售5mm*7mm表贴晶振(XO)。第一个待测器件是基于模拟乘法器的156.25MHz LVPECL XO。第二个待测器件是输出频率可根据内部锁相环(PPL)调节的LVDS XO,其输出频率为78.125MHz或312.5MHz。两种待测器件的端口用于驱动50欧姆测量设备,如图2中e和f所示。除非另作说明,图2测量设置中使用0.1μF AC耦合电容和0欧姆串联终端电阻。
图2:使用示波器(a)、巴伦合路器(b)、巴伦分路器(c)和单端相位噪声分析仪(d)的测量设置,测量待测器件LVPECL(e)和LVDS(f)的输出。
部分测量设置使用的巴伦连接或不连接同轴固定衰减器(即衰减器)。虽然研究了多个供应商的巴伦,为了说明关键发现,在此只举出2个宽带巴伦。两个巴伦都来自Marki Mi
- 理解和设计高速D/A转换器的宽带输出网络(01-12)
- 射频采样ADC输入保护:这不是魔法(07-27)
- 射频知识——抖动和相位噪声(09-22)
- 使用信号/频谱分析仪进行相位噪声测量的方法及注意事项(05-24)
- 射频信号时间频率稳定性的相位噪声和抖动(07-04)
- 基于ADF4106的低相噪本振设计(05-26)