如何使用巴伦测量相位噪声?
相位噪声的测量结果,说明了外部衰减对测量的影响。
图6b反映了有隔离的巴伦相位噪声测量结果和外部衰减器的衰减量无关,说明在巴伦内部增加隔离度大幅度消除了巴伦在测量中引入的器件误差。因此为无隔离巴伦增加外部衰减和在巴伦内部增加隔离的效果同样好。
为减小巴伦在相位噪声测量中的器件误差而增加外部衰减的缺点是降低了进入相位噪声分析仪的信号功率,从而可能降低测量数据的准确性。Keysight相位噪声分析仪在其PLL内部集成了基于二极管的需要直流偏置的相位探测器。因此推荐输入信号的功率范围为0-5dBm。增加外部衰减实际上将待测信号降低到仪器的噪声本底之下。打开仪器中的互相关功能有助于提取待测信号,然而互相关功能需要增加测量时间,且不见得管用:取决于待测信号比仪器的噪声本底低多少。仪器的噪声本底对相位噪声测量的影响可参见图6,和较低衰减对应的曲线相比,其中9dB的外部衰减对应曲线在最低相位噪声水平反而高(如偏离中心频点2MHz以外)。
因此在差分端口使用高隔离度的巴伦是非常重要的。如果需要外部衰减,要使用能获得稳定数据的最小衰减量。确定最优的衰减值可以小幅度增加衰减,直到噪声数据不再变化为止。然后选择可以得到此测量数据的最小衰减值。在图6a中,最优的衰减值为6dB(本文未给出)。在图6b中,不需要外部衰减。
除了巴伦端口之间较差的隔离度带来的信号损失,在特征阻抗(通常是50欧姆)失配的传输线接口处也会造成反射。这些反射和前向传播信号合并形成驻波。此时线缆两端待测器件和巴伦端口处的电压幅度(和电流)是线缆长度的函数,会影响待测器件和巴伦的正常工作。VSWR测量的是驻波最大值和最小值之间的比例。具有理想负载的元器件的VSWR值为1,表明线缆中任意位置的电压(和电流)是恒定的。实际上元器件的VSWR都是大于1的。待测器件驱动器阻抗是看向巴伦的,因此是连接待测器件和巴伦的线缆长度的函数。图7说明改变线缆长度会影响信号完整性和相位噪声特征。
图7:使用无隔离巴伦、6英寸同轴线(a)和18英寸同轴线(b)测得的LVPECL 156.25MHz晶振波形和相位噪声。
理论上,线缆长度越长,所述传输线效应越明显。较短的传输线中,待测器件到巴伦的时延比信号转换时间短,反射在影响信号之前就完成了。从频域角度分析,较长的传输线相位延迟随频率变化更多。从时域角度分析,较长的传输线时延较长,当发生反射时,造成的驻波和干扰的效果也越大。通过选用回波损耗性能优秀的巴伦(防止最初的反射)和待测器件(防止次生反射)可以减小这些效应。
杂散相位噪声
虽然相位噪声分析仪可以测得原始相位噪声(单位dBc/Hz),它也能通过数据后处理来检测杂散相位噪声。相位噪声数据dBc/Hz可以和杂散数据以幅度比的形式绘制,杂散数据可以使用不同的颜色以便区分其单位变化(因为两者共用Y轴刻度)。图8 a和b是按此方法绘制的312.5MHz LVDS XO的两个杂散相位噪声曲线。按照图2d中设置测量,图8 c和d使用水平线量化单端信号杂散的幅度。单端杂散幅度用水平线表示,差分杂散幅度是衰减量的函数,用柱状图表示。这些线对应OUT+和OUT-。对于此待测器件来说,其两个输出端口杂散幅度是不同的。图8 c和d表明按照图2b中设置,使用无隔离巴伦测得的杂散幅度。可见,通过增加外部衰减的幅度,基本上可以将杂散的幅度降低至单端杂散幅度(用dBc表示)平均值水平。
图8:LVDS 312.5MHz晶振的相位噪声(a),其中监测到39MHz和78MHz杂散(b),并测得杂散的相对幅度(c)和(d)。
串联端接
为了进一步分析元件反射效应和巴伦隔离度对相位噪声测量的影响,待测器件输出端通过串联端接和传输线进行阻抗匹配后,再连接到无隔离的巴伦。确切的说,测得LVPECL XO输出阻抗在156MHz为35欧姆,所以图2e中串联电阻Rs的阻值为15欧姆。同理可得,LVDS XO输出阻抗在78MHz和312MHz分别为3欧姆和13欧姆,所以图2f中串联电阻Rs分别为47欧姆和37欧姆。这两种情况下,使用串联端接的相位噪声测量结果都更加准确。
图9总结了以上两种情况的测量结果。红色曲线是原始的相位噪声数据,测量使用无隔离巴伦、无串联端接、且无外部衰减。绿色曲线除使用串联端接以外,其余和红色曲线测量条件相同。蓝色曲线和绿色曲线条件相似,但在得到稳定相位噪声曲线的基础上增加了更多的衰减(即减少3dB衰减也能测得和图9中相同的蓝色曲线数据)。蓝色曲线和使用带隔离的巴伦测得的数据相同,因此代表了此待测器件
- 理解和设计高速D/A转换器的宽带输出网络(01-12)
- 射频采样ADC输入保护:这不是魔法(07-27)
- 射频知识——抖动和相位噪声(09-22)
- 使用信号/频谱分析仪进行相位噪声测量的方法及注意事项(05-24)
- 射频信号时间频率稳定性的相位噪声和抖动(07-04)
- 基于ADF4106的低相噪本振设计(05-26)