微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 顶加载分形光子晶体太赫兹波段天线设计

顶加载分形光子晶体太赫兹波段天线设计

时间:03-01 来源:电子技术应用 点击:

0 引言

太赫兹(THz)波是一种频率高于微波而低于红外光的电磁波,1 THz=1012 Hz。上世纪八十年代以来,微型半导体技术、超快光电子技术发展迅速,高性能太赫兹波源和检测设备研制成功,太赫兹波技术取得了长足的进步。物质的太赫兹谱信息丰富且分辨率高[1-3],太赫兹电磁波在环境保护监控、成像与检测、疾病诊断、天文研究、高速宽带移动通信、军用侦察设备等领域都具有巨大的应用价值[4-7]。

太赫兹波的应用离不开太赫兹波发射和接收装置,性能优异的太赫兹波段天线对于太赫兹波的应用具有重要意义。太赫兹波段设备应用领域广阔,在多种不可预知的恶劣环境下工作的几率较高,要求太赫兹波段天线具有优良的物理机械性能,能够耐受酸、碱、油和常见溶剂,能够在高温和低温环境下正常工作;太赫兹波段天线的尺寸应较小,保证其能够放进毫米或亚毫米数量级的太赫兹设备里;天线的工作中心频率应在1 THz附近,回波损耗最小值应小于-20 dB,绝对工作带宽应大于0.1 THz,相对工作带宽应大于10%。

近年来,国内外学者研制成功了一批太赫兹波段天线。西安理工大学的研究团队通过在天线介质衬底中使用光子晶体结构,成功设计了一款回波损耗和方向图特性都较好的太赫兹天线[8];首都师范大学的研究团队利用在矩形波导的窄边开斜缝的方法,设计了一款可用于扫描成像的太赫兹天线[9];英国谢菲尔德大学的研究团队研制了一款带有双层二维光子带隙的太赫兹偶极子天线,实现了高输入电阻的太赫兹天线设计[10];日本富士通实验室基于扇出晶圆级封装技术,设计了一款太赫兹集成天线,实现了太赫兹天线的小型化[11]。上述太赫兹天线设计都成功实现了小型化,回波损耗性能也较好,但是天线工作频率都较低,只有0.1~0.5 THz,还未达到1 THz;上述太赫兹天线的工作带宽都较小,属于窄带天线,相对工作带大于10%的宽频带工作的太赫兹天线未见报道。同时使用顶加载技术、分形结构、光子晶体结构的太赫兹天线设计方案未见报道。

1 顶加载技术简介

顶加载技术是一种常见的提高天线效率、缩减天线体积的有效方法[12]。顶加载是在天线顶部加上具有较大的分布电容的负载,使用顶加载结构后,天线的顶部分布电容可以等效为一段开路传输线,等效传输线长度与天线原长度相叠加,使天线的工作长度得到延长。小尺寸天线在顶部加上容性负载后,可以等效为工作长度较长的天线使用。小球加载、圆盘加载、辐射叶加载等都是有效的顶加载方式。

2 分形光子晶体结构简介

光子晶体结构是由一种介质在另一种介质中周期性排布组成的新型光学材料,其变化周期为光波长量级。光子晶体尚未获得广泛应用,这与其制作工艺要求较高有关。光子晶体的周期结构尺寸与其对应的电磁波波长数量级一致。红外光波段的光子晶体结构,其尺寸要求精确到微米数量级,制作难度较大。微波段的光子晶体结构,其尺寸只要求精确到厘米数量级,相对较容易制作,但是较大的尺寸使它难以实现小型化,限制了它的应用领域。太赫兹波介于上述两个波段之间,太赫兹波段光子晶体结构尺寸较小,能够适应太赫兹器件小型化的要求,其尺寸要求精确到亚毫米数量级,目前的制作工艺可以达到这个精度要求,这些都说明了基于光子晶体结构制作太赫兹波段的器件是可行的。

光子晶体产生的光子带隙能够全部或部分阻碍电磁波的传播。在天线设计中使用光子晶体结构时,经过严格设计,可以使光子晶体产生的光子带隙频率与天线的工作中心频率一致,这时光子带隙将部分阻止天线在原工作中心频率的能量辐射,使能量扩散到附近的频率辐射,从而增加了天线辐射能量的频率范围,增大天线的工作带宽。

对于工作在太赫兹波段的器件,实现宽频带工作是设计的重点要求之一,而分形技术无疑是满足这一要求的一种有效方法。我们利用分形结构能够有效地设计小型化、宽频带工作器件[13-14]。

将分形结构与光子晶体结构相结合,将光子晶体的每个周期结构设计为分形结构,可以得到分形光子晶体结构,这种结构将兼具两者的优点,具有出色的宽频带工作特性。

3 顶加载分形光子晶体天线结构设计

本文在设计中使用聚对苯二甲酸乙二酯(Polyethylene Terephthalate, PET)薄膜基质作为天线的基质材料,保证了天线结构可以耐油、耐稀酸、耐稀碱、耐大多数溶剂,天线可在-70 ℃~150 ℃的温度范围内正常工作,且高、低温对其机械性能影响很小。

薄膜基质的相对介电常数为4,形状为矩形,尺寸是80 μm×40 μm,厚度为10 μ

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top