重温经典排序思想--C语言常用排序全解
==========
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当
满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)
时称之为堆。在这里只讨论满足前者条件的堆。
由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以
很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序,
使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点
交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点
的堆,并对它们作交换,最后得到有n个节点的有序序列。
从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素
交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数
实现排序的函数。
堆排序是不稳定的。算法时间复杂度O(nlog2n)。
*/
/*
功能:渗透建堆
输入:数组名称(也就是数组首地址)、参与建堆元素的个数、从第几个元素开始
*/
void sift(int *x, int n, int s)
{
int t, k, j;
t = *(x+s); /*暂存开始元素*/
k = s; /*开始元素下标*/
j = 2*k + 1; /*右子树元素下标*/
while (j {
if (j {
j++;
}
if (t<*(x+j)) /*调整*/
{
*(x+k) = *(x+j);
k = j; /*调整后,开始元素也随之调整*/
j = 2*k + 1;
}
else /*没有需要调整了,已经是个堆了,退出循环。*/
{
break;
}
}
*(x+k) = t; /*开始元素放到它正确位置*/
}
/*
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
*/
void heap_sort(int *x, int n)
{
int i, k, t;
int *p;
for (i=n/2-1; i>=0; i--)
{
sift(x,n,i); /*初始建堆*/
}
for (k=n-1; k>=1; k--)
{
t = *(x+0); /*堆顶放到最后*/
*(x+0) = *(x+k);
*(x+k) = t;
sift(x,k,0); /*剩下的数再建堆*/
}
}
void main()
{
#define MAX 4
int *p, i, a[MAX];
/*录入测试数据*/
p = a;
printf("Input %d number for sorting :\n",MAX);
for (i=0; i {
scanf("%d",p++);
}
printf("\n");
/*测试选择排序*/
p = a;
select_sort(p,MAX);
/**/
/*测试直接插入排序*/
/*
p = a;
insert_sort(p,MAX);
*/
/*测试冒泡排序*/
/*
p = a;
insert_sort(p,MAX);
*/
/*测试快速排序*/
/*
p = a;
quick_sort(p,0,MAX-1);
*/
/*测试堆排序*/
/*
p = a;
heap_sort(p,MAX);
*/
for (p=a, i=0; i {
printf("%d ",*p++);
}
printf("\n");
system("pause");
}
- 基于TMS320C62X DSP的混合编程研究(07-12)
- 语音识别及其定点DSP实现(06-14)
- C语言编译过程中的错误分析(08-25)
- 单片机的图形化编程方法分析(05-03)
- 基于数字信号处理器的汇编程序优化方案(03-24)
- C语言在FPGA上实现DSP的解决方案(04-09)