M-BUS协议基础知识
随着电子和通信技术的发展,各种消耗量仪表(包括热量表)从“人工抄读”逐渐发展到“远程控制抄读”,后者是消耗量仪表技术的逻辑发展与延伸。热量表一般提供RS-485、Modbus或MBus总线接口之一以实现远程抄表和控制功能。仪表总线MBus(Meter-Bus)是一种专门为热量表远程数据传输设计的总线协议,它是测量仪表数据传输数字化的一种重要技术,已经广泛应用于热量计量领域,并成为欧洲的热量计量标准的一部分(欧洲标准EN1434-3)。除了热计量领域,它也可用于连接其他的各种消耗量仪表、传感器、执行器。
为了满足日常使用,一个优秀的总线系统必须满足如下一些经济和技术方面的要求:容量大,可扩展,鲁棒性、成本低、用电量少、传输速度。M-Bus总线协议在这些方面能获得最佳性价比,欧洲能源计量领域的著名公司,如斯伦贝谢、卡卢姆普、真兰等公司生产的热量表大多遵循EN1434-3技术标准,支持MBus协议,这使得MBus协议成为事实上的行业标准。随着MBus技术的发展,其应用将逐渐扩展到报警系统、照明系统等更广阔的领域。
远程终端很好地支持了MBus协议,实现了与国外先进仪表产品的无缝连接,可以通过MBus总线接口读取热力站内安装的热量表主要测量值,包括累积热量、累积流量、瞬时温度、瞬时流量、供水温度、回水温度和供回水温差,从而为监测、控制和计费提供依据。
1.1
MBus总线是一种主从式半双工传输总线,采用主叫/应答的方式通信,即只有处于中心地位的主站(Master)发出询问后,从站(Slave)才能向主站传输数据,如图1-1所示。
图1-1MBus总线结构
MBus的主要特点如下:
1.
2.
3.
4.
5.
6.
MBus总线协议的体系结构建立在ISO/OSI参考模型上,由下至上定义了物理层,数据链路层和应用层(参见表1-1)。
表1-1MBus总线协议与OSI参考模型
OSI | MBus | 功能 |
物理层 | MBus | 电缆、拓扑结构、Bit流的表示传输、电气特性 |
数据链路层 | IEC870-5 | 传输参数、数据报格式、寻址、数据完整性 |
网络层 | MBus | 扩展寻址(可选) |
传输层 | - | |
会话层 | - | |
表示层 | - | |
应用层 | MBus | 定义数据结构、数据类型、功能代码等 |
1.2
1.2.1
图1-2基于MBus的远程抄表系统
原则上MBus可以任一种拓扑结构建立网络,如星型、环形、总线型等,但通常MBus采用总线型拓扑结构。典型的MBus系统如图1-2所示,由一个主站、若干个从站和两根连接电缆组成。
主站是一个智能控制器,可为MBus总线提供电源,与从站进行通信,保存从站的测量数据,还可以利用各种现有的通讯手段与异地的计算机联网构成一个完备的远程管理计量系统。从站是各种计量仪表,如电表、水表、热表、气表等,它们通过MBus接口并联在总线主电缆上,该接口负责收发总线数据,控制总线电源和电池电源的切换。两线电缆通常采用标准电话双绞线,没有正负极性之分。
MBus物理层bit流传输具有独特的电平特征(如表1-2)。主站到从站的bit流传输通过总线电平切换实现,而从站到主站的bit流传输通过电流调制实现。定义逻辑“1”为MARK,逻辑“0”为SPACE。
表1-2MBus物理层bit流表示
Bit | Bit流的表示 | Bit流传输方向 |
逻辑“1”(MARK) | 22V≤Vmark≤42V | 主站到从站 |
0mA≤Imark≤1.5mA | 从站到主站 | |
逻辑“0”(SPACE) | 12V≤Vspace≤Vmark-10V | 主站到从站 |
Imark+11mA≤Ispace≤Imark+20 |
M-BUS协议基础知 相关文章:
- Windows CE 进程、线程和内存管理(11-09)
- RedHatLinux新手入门教程(5)(11-12)
- uClinux介绍(11-09)
- openwebmailV1.60安装教学(11-12)
- Linux嵌入式系统开发平台选型探讨(11-09)
- Windows CE 进程、线程和内存管理(二)(11-09)