射频半导体材料的那点事
半导体材料可以分为元素半导体和化合物半导体两大类,元素半导体指硅、锗单一元素形成的半导体,化合物指砷化镓、磷化铟等化合物形成的半导体。砷化镓的电子迁移速率比硅高5.7倍,非常适合用于高频电路。
砷化镓组件在高频、高功率、高效率、低噪声指数的电气特性均远超过硅组件,空乏型砷化镓场效晶体管(MESFET)或高电子迁移率晶体管(HEMT/PHEMT),在3V电压操作下可以有80%的功率增加效率(PAE:poweraddedefficiency),非常的适用于高层(hightier)的无线通讯中长距离、长通信时间的需求。
砷化镓元件因电子迁移率比硅高很多,因此采用特殊的工艺,早期为MESFET金属半导体场效应晶体管,后演变为HEMT(高速电子迁移率晶体管),pHEMT(介面应变式高电子迁移电晶体)目前则为HBT(异质接面双载子晶体管)。异质双极晶体管(HBT)是无需负电源的砷化镓组件,其功率密度(powerdensity)、电流推动能力(currentdrivecapability)与线性度(linearity)均超过FET,适合设计高功率、高效率、高线性度的微波放大器,HBT为最佳组件的选择。
而HBT组件在相位噪声,高gm、高功率密度、崩溃电压与线性度上占优势,另外它可以单电源操作,因而简化电路设计及次系统实现的难度,十分适合于射频及中频收发模块的研制,特别是微波信号源与高线性放大器等电路。
砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4-6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。
SiGe
1980年代IBM为改进Si材料而加入Ge,以便增加电子流的速度,减少耗能及改进功能,却意外成功的结合了Si与Ge。而自98年IBM宣布SiGe迈入量产化阶段后,近两、三年来,SiGe已成了最被重视的无线通信IC制程技术之一。
依材料特性来看,SiGe高频特性良好,材料安全性佳,导热性好,而且制程成熟、整合度高,具成本较低之优势,换言之,SiGe不但可以直接利用半导体现有200mm晶圆制程,达到高集成度,据以创造经济规模,还有媲美GaAs的高速特性。随着近来IDM大厂的投入,SiGe技术已逐步在截止频率(fT)与击穿电压(Breakdownvoltage)过低等问题获得改善而日趋实用。
目前,这项由IBM所开发出来的制程技术已整合了高效能的SiGeHBT(Heterojunction Bipolar Transistor)3.3V及0.5μm的CMOS技术,可以利用主动或被动组件,从事模拟、RF及混合信号方面的配置应用。
SiGe既拥有硅工艺的集成度、良率和成本优势,又具备第3到第5类半导体(如砷化镓(GaAs)和磷化铟(InP))在速度方面的优点。只要增加金属和介质叠层来降低寄生电容和电感,就可以采用SiGe半导体技术集成高质量无源部件。此外,通过控制锗掺杂还可设计器件随温度的行为变化。SiGeBiCMOS工艺技术几乎与硅半导体超大规模集成电路(VLSI)行业中的所有新技术兼容,包括绝缘体硅(SOI)技术和沟道隔离技术。
不过硅锗要想取代砷化镓的地位还需要继续在击穿电压、截止频率、功率消耗方面努力。
RF CMOS
RF CMOS工艺可分为两大类:体硅工艺和SOI(绝缘体上硅)工艺。由于体硅CMOS在源和漏至衬底间存在二极管效应,造成种种弊端,多数专家认为采用这种工艺不可能制作高功率高线性度开关。与体硅不同,采用SOI工艺制作的RF开关,可将多个FET串联来对付高电压,就象GAAS开关一样。
尽管纯硅的CMOS制程被认为仅适用于数字功能需求较多的设计,而不适用于以模拟电路为主的射频IC设计,不过历经十几年的努力后,随着CMOS性能的提升、晶圆代工厂在0.25mm以下制程技术的配合、以及无线通信芯片整合趋势的引领下,RFCMOS制程不仅是学界研究的热门课题,也引起了业界的关注。采用RFCMOS制程最大的好处,当然是可以将射频、基频与存储器等组件合而为一的高整合度,并同时降低组件成本。但是症结点仍在于RFCMOS是否能解决高噪声、低绝缘度与Q值、与降低改善性能所增加制程成本等问题,才能满足无线通信射频电路严格的要求。
目前已采用RFCMOS制作射频IC的产品多以对射频规格要求较为宽松的Bluetooth与WLAN射频IC,例如CSR、Oki、Broadcom等Bluetooth芯片厂商皆已推出使用CMOS制造的Bluetooth传送器;英特尔公司宣布已开发出能够支持当前所有Wi-Fi标准(802.11a、b和g)并符合802.11n预期要求的全CMOS工艺直接转换双频无线收发信
- CMOS RF技术迎来新一轮发展(07-18)
- 技术探究:微流控芯片技术为什么这样强悍?(06-08)
- 从蓝牙技术蓝图看半导体原厂物联网战略.(05-11)
- 氮化镓正在改变着雷达,军事通信和电子战(10-13)
- 全球IC产业市场受全球经济发展影响,将实现增长(02-14)
- 氮化镓技术发展评估(04-24)