同步整流技术在正激变换器中的应用研究
p1\' = Clip3( p1?2*tc, p1+2*tc, ( p2 + p1 + p0 + q0 + 2 ) >> p2\' = Clip3( p2?2*tc, p2+2*tc, ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> q0\' = Clip3( q0?2*tc, q0+2*tc, ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> q1\' = Clip3( q1?2*tc, q1+2*tc, ( p0 + q0 + q1 + q2 + 2 ) >> q2\' = Clip3( q2?2*tc, q2+2*tc, ( p0 + q0 + q1 + 3*q2 + 2*q3 + 4 ) >> D = (9*(q0– p0)-3*(q1–p1)+8)>> Δp = Clip3(-(tc>>1),tc>>1,(((p2+p0+1)>>1)–p1+Δ)>> Δq = Clip3(-(tc>>1),tc>>1,(((q2+q0+1)>>1)–q1–Δ)>> BS > 处,电流检测是一个需要重点考虑的问题,在电感电流没有反向时,变压器原边的电流始终是流进同名端留出异名端的,而在轻载的时候,由于电感电流反向, 变压器副边流过同名端进异名端出的电流,原边流过异名端进同名端出的电流,因在检测电流的时候必须能够检测到双向的电流。 检测电流一 般有电阻和电流互感器等检测方法,如果用电阻显然可以检测双向的电流,但是考虑到损耗太大,因此电阻检测不可行;如果用电流互感器检测电流,那么电流互感 器副边的接法就必须考虑到能够检测双向的电流,因此如图10所示,电流互感器副边与电阻串联的二极管必须用齐纳二极管,如果副边用普通的二极管,在电流互 感器流过反向电流的时候,由于二极管的阻断作用,这个反向电流将不会被检测到,换成齐纳二极管后,当电流互感器流过反向电流的时候,齐纳二极管被击穿并稳 定在一个电压值,电流互感器的副边流过一个流进同名端的电流,并且电流互感器利用齐纳二极管上的压降来进行磁复位,因此就检测到了原边流过的反向电流。 另外,因为电流互感器检测的是流过开关管的电流信号,而由于变压器磁复位的时候电流是从复位绕组的同名端流进,异名端流出的,这个电流是不需要检测的,因此,电流互感器要放在如图9中所示的位置,正确检测流过开关管的电流信号。 5 实验结果 本文采用外驱同步整流的方法,制作了一台高压输入低压输出的电源模块原理样机,另外本文还采用了平面变压器技术及表面贴片技术,与传统变压器相比,由 pcb绕组组成的平面变压器,具有电流密度大、变压器漏感小等优点。平面变压器技术不仅可以有效的提高模块的功率密度,大幅改善由于漏感带来的占空比丢失 问题,还可以保证批量生产时良好的参数一致性,原理样机如图11所示,样机的具体参数如下: 工作频率:f=300khz; 输入直流电压:vin=28v(16v ~36v); 输出直流电压:vo=5v; 输出直流电流:io=10a; 模块体积:57.9×61×12.7mm3 图12给出了在额定输入、满载输出时,原边主管驱动、副边整流管及续流管驱动和输出电压纹波,可以看出纹波小于100mv,整流管与续流管驱动之间加入死区,并且整流管滞后于主管开通、提前于主管关断。 图13分别给出了不同输入电压,负载从10%io~90%io(1a~9a)以及从90%io~10%io(9a~1a)跳变时,各路输出电压的纹波波 形,由图中可以看出,负载跳变时,16v、28v和36v输入时输出电压的脉动分别为240mv、240mv和280mv,且恢复时间小于500μs。 图14给出的分别是原理样机在额定输入不同负载输出以及不同输入电压满载输出条件下的整机效率曲线,在额定输入满载输出时整机的变换效率可达88%。 6 结束语 本文指出了栅极电荷保持的自驱型同步整流方法存在的缺点,并且提出了一种新的控制策略;另外本文以单端正激电路为例,分析了在同步整流轻载时需要注意的 问题;最后制作了一台28v(16~36v)输入,5v/10a输出的模块电源原理样机,进行了实验验证。实验结果表明,相对于二极管整流的单端正激变换 器,该拓扑结构和控制策略能够有效地提高模块电源的效率,同时具有体积小、动态性能好的优点,满足低压输入大电流输出模块电源的应用需求。
同步整流正激变换器DC-D 相关文章:
- Windows CE 进程、线程和内存管理(11-09)
- RedHatLinux新手入门教程(5)(11-12)
- uClinux介绍(11-09)
- openwebmailV1.60安装教学(11-12)
- Linux嵌入式系统开发平台选型探讨(11-09)
- Windows CE 进程、线程和内存管理(二)(11-09)