同步整流技术在正激变换器中的应用研究
p1\' = Clip3( p1?2*tc, p1+2*tc, ( p2 + p1 + p0 + q0 + 2 ) >> p2\' = Clip3( p2?2*tc, p2+2*tc, ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> q0\' = Clip3( q0?2*tc, q0+2*tc, ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> q1\' = Clip3( q1?2*tc, q1+2*tc, ( p0 + q0 + q1 + q2 + 2 ) >> q2\' = Clip3( q2?2*tc, q2+2*tc, ( p0 + q0 + q1 + 3*q2 + 2*q3 + 4 ) >> D = (9*(q0– p0)-3*(q1–p1)+8)>> Δp = Clip3(-(tc>>1),tc>>1,(((p2+p0+1)>>1)–p1+Δ)>> Δq = Clip3(-(tc>>1),tc>>1,(((q2+q0+1)>>1)–q1–Δ)>> BS > 少剩余的电荷仍能驱动s3时,这时s3就会正向导通,电流就会由漏极通过s3流向源 极,并经过整流管s2回到变压器副边,这样变压器副边电压就被短路,s4就无法再导通,s3上的栅极电荷就一直存在,直到这些电荷因为驱动s3而消耗完, 并又会进入下一次直通过程。如此恶性循环使变压器副边一直处于短路,即变换器副边处于直通的状态,情况严重的话会损坏整流管和续流管,甚至损坏变换器,因 此必须用一种方法,在下个周期变压器副边电压为上正下负之前就将s3的栅极电荷放掉,以保证不出现直通的现象。 如图5所示,对原来的栅极电荷保持电路进行改进,将原边ic产生的占空比分为两路,一路通过加延时驱动主功率管,另一路通过驱动变压器隔离驱动s4,因 为变压器副边电压为上正下负的建立和原边主功率管s1的开通几乎是同时的,那么采用图中的方法后,当在原边开关管开通之前,即变压器副边电压变为上正下负 之前,s4就由原边提供的一个驱动而开通,并使得续流管s3的栅极电荷通过s4释放掉,提前使s3关断,从而避免了直通的发生,该方法其他电路的接法与以 前提出的栅极电荷保持电路一样,这样,该电路即实现了栅极电荷保持的功能,又避免了变换器直通的发生。 如图6所示,给出了改进后电路各个开关管的驱动波形,由图中可以看出,在s1开通之前提前开通s4,将s3的栅极电荷放掉,避免了变压器副边直通的发生。 3 外驱同步整流 对于采用变压器副边电压来驱动自驱型的同步整流,即该电压上正下负的时候驱动整流管s2,该电压下正上负的时候驱动续流管s3,由于这两个驱动电压采的 是同一个电压,因此这两个驱动不会存在交叠,不需要进行处理。但是对于外驱型同步整流的方法,整流管和续流管的驱动之间必须加入死区,使两个驱动不出现交 叠的部分,进而防止变换器副边出现直通。本文采用的外驱同步整流的原理框图如图7(a)所示。 本文中首先将原边ic输出的信号经过驱动变压器隔离传输到副边,再利用同步整流驱动芯片将这个信号进行处理,在同步整流芯片内部可简单看成是一个 固定的电容,通过在外部接电阻形成rc冲放电来实现延时,最终通过芯片处理同时延时了整流管s2以及续流管s3驱动信号的上升沿,从而在两个驱动之间加入 死区,如图7(b)中波形所示。 同时,因为副边加了一个同步整流的芯片,而由于芯片本身工作的延时,使得输出信号整体对输入有一个延时,因此必须在原边也加入一个电路来补偿这个延时,较好的方法就是在原边同样加入一个同步整流芯片,这样使得对驱动的控制更加方便和容易,而且可以保证足够的驱动能力。 另外,可以通过对副边两个管子驱动的控制来实现整流管和续流管的零电压开关:对于整流管来说,当变压器副边电压变为上正下负,这时如果整流管的驱动还未 建立,那么电流就会先从整流管的体二极管流过,如果此时再给整流管提供驱动,这时整流管的开通即为零电压开通,但是考虑到效率的因素,必须保证电流在体二 极管中流过的时间很短;而在关断的时候,可以在变压器副边电压变为下正上负之前提前关断整流管,这样就实现了整流管的零电压关断,同样必须保证电流在体二 极管中流动的时间很短。对于续流管采取同样的方法,可以实现续流管的零电压开关。 4 同步整流轻载注意事项 对于副边采用传统二极管续流工作的正激变换器来说,当负载电流进一步减小直至很轻时,将会出现电感电流断续的工作情况,如图8所示。 当副边采用同步整流工作时,由于续流mosfet的双向导通的特性,而电感电流要保持连续,因此在轻载的时候电感电流连续并能够反向,如图9所示,使得 续流管中出现从漏极流向源极的电流,并产生一个流出输出正端流进输出负端的环流,这个环流会消耗环流能量,这个能量的大小和输出滤波电感有关,输出滤波电 感越小,环流就会越大,环流能量越大,损耗也越大。所以由于同步整流器不能从ccm模态自动切换到dcm模态,轻载时就会产生很大的环流损耗,这种环流损 耗会降低变换器在轻载时的效率,当负载轻载一定程度的时候,受环流的影响,变换器的效率会显著下降,因此必须在效率出现显著下降的时候将变换器从同步整流 的工作状态切换到二极管整流的工作状态,来保证轻载时变换器的效率不至于太低,一般这个效率的拐点出现在负载的10%~25%之间。 本文中采用的切轻载的方法是:在变换器的原边检测电流信号,设定在效率出现拐点时的负载为切换的负载点,当检测到电流小于该设定值后由原边输出一个信号,该信号传递到副边并最终切断同步整流信号,使变换器工作在二极管整流状态。 此
同步整流正激变换器DC-D 相关文章:
- Windows CE 进程、线程和内存管理(11-09)
- RedHatLinux新手入门教程(5)(11-12)
- uClinux介绍(11-09)
- openwebmailV1.60安装教学(11-12)
- Linux嵌入式系统开发平台选型探讨(11-09)
- Windows CE 进程、线程和内存管理(二)(11-09)