微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 仿真设计 > 高线性低噪声放大器设计

高线性低噪声放大器设计

时间:03-17 来源: 点击:
行折衷考虑。另外,在发射极串接电感L3改善了放大器的线性度但同时也带来噪声性能的恶化,其恶化程度如图5所示。因此,设计中也要对串接电感L3进行优化,以平衡放大器的三阶交截点和噪声系数。

1. 6 高三阶交截点的设计
  两种技术可以实现OIP3 > +25dBm的设计要求,即在发射极串接电感以及增加在B-E结的电荷储量。

(1)发射极串接电感
  在发射极串接电感,可以改善放大器的稳定度和线性度,但同时也影响器件的输进输出匹配和噪声匹配。考虑到实际射频放大器电路尺寸很小,外接电抗元件难于实现,因此设计中采用二节并联的微带线接地(如图6所示)作为反馈元件以等效电路所需的电感量,从而改善了放大器的三阶交截点,当然这样也会减小放大器的增益以及引起噪声性能在一定程度上的恶化。优化设计表明:为了使放大器的OIP3进步约4.5dBm,增益却减小了约3.5dB.

(2)增加B-E结电荷储存
  在双音测试中,输进两个等幅、频率分别为f1和f2的正弦信号,差频1MHz。因此,器件非线性二阶互调产物f2 - f1以1MHz的速率调制B-E结和C-E结的电压。而发射极电流是B-E结电压的指数函数,即Ie≈Iese(qVBE/KT),所以低频互调产物f2-f1出现在器件的终端将会以f2 - f1的速率改变晶体管的工作点,这样反过来也影响了失真产物的电平。所以,假如在B-E结间增加一个相对大的电容,则可以旁路掉这个低频产物f2-f1, 那么B-E结的电压波动将会减少,因而减少了三阶互调产物。在图2中, C3=0.1μF起到了旁路低频互调产物f2-f1的作用。同理, C6= 0.1μF也是用于旁路低频互调产物f2-f1的,但效果不如在基极改善明显。

  设计中采用集总电感进行基极偏置并把直流偏置网络与射频信号分开,而不用高阻抗微带线实现,这样在低频端晶体管B-E结电荷储存与终端之间获得低阻抗,使偏置回路与射频回路取得更好的分隔效果。电感L1=15nH在几十兆赫兹频段产生的阻抗可忽略,但在1950 MHz却能获得足够大阻抗,使LNA在正常工作频率范围内把晶体管基极与偏置网络分开。

2 印刷电路板的电磁仿真

  通过上一节对放大器的分析和优化设计,将终极得到的电路制作在FR4(εr=4.5, h=0.8 mm)基片上。

  考虑到实际制作的PCB可能与原理设计的情况不完全一致,因此为了进一步了解电路性能,也为了更好地调试实际电路,有必要对放大器PCB进行电磁仿真。Designer工具中的电磁仿真模块可以实现对电路PCB的电磁仿真。首先,在AutoCAD绘图工具中创建LNA的Layout印刷电路布线图。考虑到DC偏置网络和射频扼流电感已将偏置电路与射频信号较好地分隔开,实际操纵时将针对放大器的AC等效电路进行电磁建模,如图10所示;其次,是定义介质基片材料的各种特性参数(必须与电路仿真原理图中定义的基片材料一致) ;接着是从AutoCAD绘图工具中导进放大器的PCB电磁仿真模型;然后定义输进输出端口激励和器件的S参数模型;在这些工作完成之后,就可以对上述模型进行仿真设置并运行仿真;最后是对结果进行分析和处理。

3 结 语

  选用性能优良的SiGe NPN BJT器件,利用仿真工具设计并实现了低本钱、低功耗和高线性的单级LNA。测试结果:放大器输出三阶交调点+ 25 dBm、噪声系数1.0dB、输出1dB压缩点+ 5.5dBm和增益14.5dB以及输进输出回波损耗均优于10 dB。因此,达到了设计指标要求。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top