采用低功耗28nm FPGA降低系统总成本
在针对大批量应用开发系统时,要考虑的一个重要因素是成本。有多个方面会影响总体拥有成本,而不仅仅是每个元器件的价格。这包括硅片的功耗要求、材料(BOM)总成本、设计和测试系统的工程师的效能等。选择FPGA供应商很重要,要考虑影响系统成本的方方面面,这体现在整个产品设计周期中。
降低成本和功耗,提高效能,让产品更快地运行,这些均是设计工程师目前必须面对的棘手问题,因此,FPGA的选择很重要。Altera Cyclone V FPGA通过多种方法帮助设计人员降低系统总成本,设计人员受益的不仅是TSMC的28nm低功耗(28LP)制造工艺,还包括Cyclone V器件系列内置的体系结构,以及Altera设计工具辅助系统所提供的强大的高效能工具。采用Cyclone V FPGA,不仅能实现业界最低的总体拥有成本,还可获得型号最全的低成本器件——从25K逻辑单元(LE)到301K LE,以及不到100K LE的唯一28nm解决方案。
Cyclone V FPGA系列有六种目标型号:仅含逻辑的(E)型号、基于3G收发器的(GX)型号、基于5G收发器的(GT)型号,以及这些型号的SoC衍生产品(分别是SE、SX和ST),每一型号都含有集成双核ARM Cortex-A9 MPCore应用级处理器。每一器件型号集成了丰富的硬核知识产权(IP)模块。与前几代体系结构相比,所采用的先进技术包括,自适应逻辑模块(ALM)、精度可调数字信号处理(DSP)模块、分段式锁相环(fPLL)、硬核存储器控制器等。
28LP制造工艺降低设计成本
Altera在28nm采用了双管齐下的制造策略,对于需要尽可能提高带宽的系统,使用TSMC的28nm高性能(28HP)工艺,对于低成本和低功耗应用,则采用28LP工艺。Stratix V FPGA采用了28HP工艺,而Arria V和Cyclone V FPGA都采用了LP工艺。对于任何电子系统,降低功耗当然也就意味着降低了运营成本以及总体拥有成本。
Cyclone V FPGA中使用的成本最优28LP工艺定制满足了低成本和低功耗应用需求。通过采用各种技术,包括使用比28HP工艺更长的栅极沟道等,同时降低了泄漏电流和动态电流。通过使用比28HP工艺更传统的金属工艺以及线键合封装技术,进一步降低了成本。与倒装焊封装相比,线键合封装使用户在每一型号上节省了大约5美元。Altera的收发器设计专长反映在高速串行接口的高可靠性和低功耗上。在早期功耗估算基准测试中,与Cyclone IV FPGA相比,Cyclone V FPGA展示出明显的低功耗优势(图1)。
图1 与前几代技术相比,Cyclone V FPGA大致降低的功耗
低成本28nm产品提高设计灵活性
从系统设计的角度看,某一FPGA系列提供多种器件密度选择有很大优势。Cyclone V FPGA的系列型号容量从25K LE到301K LE,在低成本28nm器件市场上具有明显的优势。设计人员可以在较小的型号上进行设计,如果产品范围拓展了,以后则可以移植。同样的,如果设计规模变小了,他们还可以使用更小的器件。一般而言,如果在设计周期的中间阶段改换器件系列来处理这类工程更改(ECO),其时间和资源成本都非常高。Cyclone V系列有丰富的纵向移植选择,Altera提供了最全面、性价比最高的低成本FPGA器件(如图2)。
图2 Cyclone V FPGA和Spartan-6以及Artix-7 FPGA的纵向移植途径对比
Cyclone V FPGA体系结构降低了设计成本
Altera的28nm体系结构通过多种方式降低了设计成本。核心架构提高了逻辑效率,是目前密度最高的互联结构。硬核IP实现了高性能,提高了灵活性,而且缩短了设计时间。经过优化后的收发器具有同类最佳的信号完整性,减少了调试时间。仅使用两种电压轨,因此,电源分配网络成本更低,更容易设计。采用fPLL,支持合成任意频率的时钟,不需要昂贵的振荡器,智能引脚布局提高了器件的可布线能力,增强了信号完整性。
内核架构和布线提高了逻辑效率
Cyclone V FPGA采用了创新的内核架构来高效实现逻辑和DSP功能。据估算,与前几代技术相比,由于提高了逻辑利用率,仅增强内核就能够使设计人员在每一型号上节省20美元。Cyclone V体系结构的基本构建模块是ALM。它包括一个8输入分段式查找表(LUT)以及两个加法器和四个寄存器——都紧密封装在一起(图3),提高了性能,能够很好的使用硅片面积。这一体系结构与Altera的高端器件相类似,是Cyclone IV FPGA的继承发展,其基本构建模块是LE,具有4输入LUT以及一个寄存器。ALM结合紧密封装,不仅提高了硅片的性价比,而且更容易实现时序收敛,特别是需要大量寄存器和流水线的设计。Cyclone V系列提供等价的301K-LE,以垂直临近逻辑阵列模块(LAB)的形式排列,每一LAB有10个ALM。由适配器自动配置ALM (由Altera的Quartus II开发软件提供),实现应用所需要的纯组合或者算术功能。
图3 Cyclone V FPGA自适应逻辑模块
Cyclone V FPGA具有新的嵌入式存储器模块,即M10K。这一存储器模块体积小于竞争体系结构中的嵌入式存储器模块,从而提高了粒度,单位硅片面积提供更多的存储器端口,很少浪费模块。片内存储器体系结构非常适合需要大量DSP的应用,例如电机控制、演播设备和3D电视等。为能够高效的低成本处理宽浅缓冲和延时单元,Cyclone V器件还提供了更小的640位MLAB模块。
Cyclone V FPGA还采用了高性能精度可调DSP模块。利用Altera创新的DSP模块以及有限冲击响应(FIR)滤波器专用系数块和反馈通路,设计人员能够独立配置每一乘法器的精度,从9x9到27x27位,具体取决于应用需求。通过这一功能,Cyclone V FPGA实现了设计人员在应用时所要求的精度合适的乘法器,支持设计人员尽可能采用最高效的硬件。例如,一个简单视频处理应用只需要9位精度,而一些高端彩色系统则需要24位。对于9位视频应用,一个模块可以分成三个9位乘法器,将DSP模块的效率提高了三倍。一个精度可调模块能够高效的满足所有这些范围要求。从而支持设计人员让FPGA资源来适应其算法,而不是让算法来适应有限的资源要求。
- PIC单片机开发的一些问题(12-20)
- 在选用FPGA进行设计时降低功耗的方法(03-30)
- 满足28nm迫切的低功耗需求(06-05)
- ARM Cortex-A15将于今年年底亮相便携市场(09-07)
- 如何让7系列FPGA的功耗减半(12-22)
- TI与MIT提出0.6V DSP设计(03-07)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...