微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于CPLD的线阵CCD数据采集系统

基于CPLD的线阵CCD数据采集系统

时间:06-05 来源:互联网 点击:

本文结合实际应用需要,设计了基于复杂可编程逻辑器件(CPLD)的线阵CCD数据采集系统。着重介绍了数据采集的特点及该系统软、硬件设计和最后的性能评价。

线阵CCD(Charge Coupled Device)越来越广泛地被应用到工业、军事、民用行业。采用CCD数据采集卡和微机相结合,对被测图像信息进行快速采样、存储及数据处理,是线阵CCD数据采集发展的新方向。配以适当的光学系统,可以实现光-机-电-算一体化设计。
时序发生器(用于产生CCD驱动时序和视频信号处理控制时序及I/O接口工作控制时序)的设计,是CCD数据采集电路设计的关键,也是CCD应用的关键。随着CCD的飞速发展,传统的时序发生器实现方法(如小规模集成电路实现、用EPROM实现、基于单片机实现等)已经不能够很好地满足CCD应用向高速、小型化、智能化发展的需要。同时,简单的二值化数据处理方法更无法满足CCD数据采集系统所需要的高精度、高分辨率的要求。因此,结合实际应用需要,设计了基于复杂可编程逻辑器件(CPLD)的线阵CCD数据采集系统。该系统采用高速半闪速结构A/D转换器对视频信号进行硬件处理;在此基础上,将数据采集卡与PC机相结合,把数据采集卡采集到的数据经计算机并口送至PC机;并采用直线拟合最小二乘法对采集到的图像信息进行高精度处理,实现最终的设计目的。本设计被用于卷烟烟支长度、直径智能在线检测仪中。

1 数据采集系统的特点

本数据采集系统的特点主要有:

(1) 采用高集成度的EPM7064SLC44产生系统所需的驱动和控制时序逻辑;
(2) 由外部PC机控制CCD积分时间的大小及数据采集卡的工作过程,实现智能化控制;
(3) 应用了内带采样保持的8位高速并行输出A/D芯片(TLC5510);
(4) 通过计算机并口高速传输数据信息;
(5) 采用直线拟合最小二乘法高精度定位CCD图像的边缘点。

2 数据采集系统的硬件电路设计

在本系统中,选定TCD142D线阵CCD作为图像传感器。本系统硬件电路主要由四部分构成:①时序发生器;②CCD驱动电路;③CCD视频信号处理;④I/O接口。在此设计中,TCD142D的工作频率为1MHz。

2.1 系统时序发生器的设计1~2

时序发生器主要产生驱动CCD工作的各驱动时序及CCD视频信号处理所需的控制时序。TCD142D的工作时序如图1所示。

图1 TCD 142 D 工作时序图

在本设计中,时序发生器产生的所有驱动和控制时序信号都是在MAX+PLUSⅡ开发环境下设计完成并经编译、校验后在线下载到CPLD器件内部的。合适的CPLD是根据实际需要在实验过程中选定的。在该数据采集卡的设计中,选用一片MAX7000S系列芯片EPM7064SLC44来实现时序发生器的功能。该系列芯片是ALTERA公司典型的可通过JTAG在线编程的CPLD器件。基于EPM7064SLC44的时序发生器的工作原理框图如图2所示。外部时钟信号作为CPLD时序发生器的基准信号,所有时序信号的产生都是以此为基础的。EPM7064SLC44芯片内部分为两部分:一部分是视频信号处理控制时序发生器,它为CCD视频信号处理(如A/D转换、数字信号存取等)提供各种同步控制时序;另一部分是CCD驱动时序发生器,它根据TCD142D的具体驱动时序逻辑的要求,产生CCD工作所需的四路驱动信号(RS、SH、φ1、φ2),并通过积分控制信号设定不同的CCD积分周期(积分周期可变范围为4ms~64ms,变化步长为4ms;或2ms~32ms,变化步长为2ms),同时它还为视频信号处理控制时序的产生提供时钟控制信号。图中操作控制命令主要用来控制数据采集系统的工作过程,该数据采集系统有三种工作状态:①数据采集系统初始化;②数据采集过程;③PC机读取视频信号过程。

.
图2 时序发生器电路原理框图

由图2可以看出,一片CPLD可以替代原来的几十个分立元件来实现CCD数据采集系统中各种驱动和控制时序逻辑,而且CPLD还允许设计编程保密位。采用CPLD有利于减小系统电路板的面积、提高系统的安全保密性、降低系统功耗和保证产品的质量。总之,时序发生器的可编程特性使其能够最大程度地满足用户的不同要求。

2.2 TCD142D驱动电路的设计

从EPM7064SLC44输出的脉冲波形RS、SH、φ1和φ2是由基本TTL电路产生的,正逻辑为5V,负逻辑为0V,而TCD142D要求上述信号高电平为10~12V,低电平为0V;此外,CCD为电容性负载,工作频率高时有一定的功耗,因此需对RS、SH、φ1和φ2进行电平转换和驱动放大。在从CPLD的输出引脚获得上述逻辑时序后,通过集成驱动芯片DS0026将RS、SH、φ1、φ1这四路驱动脉冲驱动放大送至TCD142D的相应输入端以驱动CCD工作。这样,在CCD的输出端将得到与入射光强相对应的模拟视频信号,并且视频信号的输出得到了相应的补偿。

2.3 TCD142D视频信号处理电路的设计

视频信号处理电路的结构框图如图3所示。

图3 视频信号处理框图

由TCD142D输出端OS输出的视频信号有以下特点:
负极性信号;
包含有周期性的复位脉冲串扰;
有效信号幅值较小,约为500 mV ;

CCD输出视频信号的上述特点决定了它不能够直接送入PC机进行软件处理,必须先从硬件上对其进行量化处理。模拟视频信号在进行A/D转换之前先要进行一系列的预处理,消除视频信号中的驱动脉冲(主要是复位脉冲)及噪声等所造成的干扰,将微弱的负极性视频信号反向、放大。在电路设计中,选用了一片AD8031运算放大器,将视频信号及其补偿输出分别送至差动放大器的反相和同相输出端,在进行视频信号放大的同时消除复位脉冲所造成的干扰,并将负极性视频信号转换成正极性。在AD8031的输出端接一级RC滤波器,进一步滤除噪声。经过上述处理后的视频信号被送入A/D转换器进行量化。在该数据采集卡的设计中,选用8位、高速、并行、半闪速结构ADC-TLC5510芯片完成A/D转换工作,其内部自带采样保持电路,这在一定程度上简化了外围电路的设计。只要设计合理,TLC5510的转换速率(最小为20 MHz)完全可以满足CCD(1 MHz)的工作要求。利用A/D转换技术将视频信号转换成与之对应的、能够反映图像灰度变化的数字量,提高了测量精度和分辨率;当TLC 5510的输出使能有效时,就可以将A/D转换结果送至8位数据线上。在数据存储器(CY 6264)写允许及地址有效的前提下,将8位A/D转换结果实时地存入数据存储器中。

2.4 I/O接口电路的设计

I/O接口电路的主要功能就是将数据采集卡与PC机有机地统一起来。在本系统中,采用16脚的插座作为两者之间的接口。两者的通讯主要包括:接收PC机发送的各种控制命令;发送数据采集卡的各种状态信号给PC机;接收PC机发送的数据采集卡积分时间设定命令;传输数据给PC机等。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top