基于ARM微处理器的液晶触摸屏的设计
0 引言
人机交互界面的种类较多,如键盘、数码管显示器、液晶显示器及带触摸的液晶屏等。决定人机交互接口方式的主要因素是成本和实际应用的需要。近十年来,液晶触摸屏以功耗低、重量轻、精度高和良好的人机界面等技术特点, 在电子设备特别是手持类电子产品中得到了普遍应用。带触摸的液晶屏,只要能测量出触摸点的坐标位置,即可根据屏上对应坐标点的显示内容或图符获知触摸者的意图, 通过微处理器处理声音、图像、文字及触摸输入控制等信息,使之成为能进行信息存取、输入和输出的集成系统。基于微控制器与液晶模块的硬件接口设计及软件编程在智能系统设计中有着重要的应用价值。ARM 微处理器,运算速度快、资源丰富、性价比高,是当前较为流行的嵌入式控制器。本文介绍的一款基于ARM7微处理器LPC2148 接口的3.2 寸液晶触摸屏,具有精度高、彩色显示逼真、应用灵活等特点,可作为中高档电子产品字符、图像的显示及人机对话的窗口。
1 总体设计方案
系统的总体设计方案如图1 所示。液晶触摸屏系统由31 2寸TFT 液晶屏模块、触摸屏和ARM 微处理器控制板组成。
触摸屏由触摸传感部件和触摸屏控制器ADS7843 组成,触摸传感部件安装在LCD 液晶屏前面,用于检测用户触摸位置,用户触摸信息送往ADS7843 控制器,并转换成触点坐标,送给ARM7 控制板,LPC2148 微处理器与液晶及触摸模块相连接,根据接收到的触摸信息,进行信号运算和处理,输出蜂鸣器等控制信号,控制液晶屏实现用户画面和数据的显示。
图1 液晶触摸屏系统总体设计方案
2 电路及原理
2.1 液晶触摸屏原理及ADS7843 触摸控制电路
原理如图2 所示。
U1为3.2 英寸TFT液晶模块,+3.3V 供电;内置SSD1289 液晶控制器;液晶屏分辨率为240×320 像素;屏幕颜色26 万色;屏幕尺寸为57mm×79mm, 有效显示面积为51mm×65mm.SSD1289 液晶控制器由16 位并行数据接口、内部控制器和LCD 驱动器组成。液晶数据传输方式为16 位并行方式,LPC2148 的16 根I/ O 口线分别接液晶模块的DB0~DB15.PWM 为亮度驱动控制输入,经9013 三极管放大后作为液晶背光。
触摸屏部分由触摸传感部件和触摸屏控制器ADS7843( U2) 组成。
图2 液晶模块及触摸电路原理
触摸传感部件是一个四线电阻屏幕,屏上引出四根线,分别对应X 轴和Y 轴各两根。测量X 方向的时候,将X + , X- 之间加上参考电压Vref , Y- 断开,Y + 作为A / D 输入,获得X 方向的电压;同理测量Y 方向的时候,将Y+ , Y- 之间加上参考电压Vref,X - 断开,X + 作为A/ D 输入,进行A/ D转换获得Y 方向的电压,之后再完成电压与坐标的换算,整个过程类似一个电位器,触摸不同的位置分得不同的电压。
以上所需要的参考电压、A/ D转换等工作由触摸屏控制器ADS7843 直接完成的,微处理器只需将相应的控制命令传输到ADS7843 即可,以获得相应电压的数据。
ADS7843是TI公司生产的四线电阻触摸屏转换接口芯片。它是一款具有同步串行接口的12 位取样模数转换器。在125kHz 吞吐速率和2.7V 电压下,功耗为750LW.在关闭模式下,功耗仅为0.5LW.由于具有低功耗和高速等特性,被广泛应用在电池供电的小型手持设备上。
ADS7843 与LPC2148的连结关系如图3 所示。ADS7843工作电压+ 3.3V, 转换器的模拟输入( X+ 、Y+ 、X- 、Y- )是一个4 通道多路器;DCLK(第4 引脚) 是外部时钟输入引脚;CS(第3 引脚) 是片选输入端,低电平有效; DIN(第2引脚) 是串行输入,控制数据通过该引脚输入;DOUT第16 引脚)是串行数据输出,用于输出转换后的触摸位置数据,最大数为二进制的4095; PENIRQ(第15 引脚) 是PEN中断,用于触摸显示屏后引发一个中断。
2.2 微处理器控制电路
原理如图3 所示。
图3 微处理器控制电路原理图
(1)LPC2148微处理器
ARM 处理器占有市场份额高,具有性能高、成本低、能耗省等特点。图3 中LPC2148(U3)是PHILIPS 半导体公司推出的一个基于ARM7TDMI- S 核
- Linux嵌入式系统开发平台选型探讨(11-09)
- 基于ARM体系的嵌入式系统BSP的程序设计方案(04-11)
- 在Ubuntu上建立Arm Linux 开发环境(04-23)
- 达芬奇数字媒体片上系统的架构和Linux启动过程(06-02)
- SQLite嵌入式数据库系统的研究与实现(02-20)
- 革新2410D开发板试用手记(04-21)