微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 基于SoC的发展测试设备进入芯片领域

基于SoC的发展测试设备进入芯片领域

时间:01-02 来源:互联网 点击:

i 称,其中一种可望用于基于模式匹配的自适应循环系统。芯片内测量仪器产生一个模拟波形,系统将其送入读取电路,并与来自读取头的输入信号作比较,给出一个频率误差信号。这个信号为适应磁头/介质噪声组合体的噪声与非线性特性提供反溃这是闭环过程。但 Dati 称:“不存在收敛的证据。我们必须为自适应回路提供一个使之工作的好的初始值。”

另外,在硅片建立以及制造时,对于磁盘组件的谐波分析还有一些有用的方法。芯片中实际上包含了 Dati 所说的“一种低等级频谱分析仪,如一个 FFT 引擎,但简化为只观察某些特定频率,因此比通用频谱分析仪要简单”。测试仪器的谐波分析有很多有价值的目的。例如,查看不应存在的特定频率,可以检测并量度磁头/介质子系统的非线性。另外,通过查看频率包络,可以估计出磁间隙,即磁头在介质上的高度。Dati 解释说:“今天的磁盘必须这么做。因为,如果你不测量和调整磁头高度,普通大气压差就可能造成磁头损毁。”

   一台频谱分析仪似乎是一个大型仪器,不可能在没有影响情况下插入一个成本高度敏感的芯片中。但 Dati 称,事实上“接收器正在越来越庞大,以致于很容易在设计中隐藏一些测量仪器电路。”

   这种意见可能是片上测试仪器未来的一个良好说明。随着芯片变得越来越复杂,不仅对片芯上的仪器存在着需求,而且还有更多探索功能电路的机会,从而快速地将模拟测量转到数字域中。并且现在有更多的空间可以隐藏一个相当复杂的块,如经过修改的 FFT 引擎。

   下一步可能是看数字域发生了什么事:将模拟测量从分属芯片不同部分的时域和频域提取出来,以提供一个混合信号系统完整状态的图像。只有采用这种片上工具,才有可能证明调试下一代复杂芯片的可能性,并在其完全运行以后保持不断改进。

附文:MEMS 加速度计也需要测试仪器

  MEMS(微机电系统)加速度计具有精确、低功耗和低成本的特点,正在使一系列应用得到彻底变革。汽车安全气囊的保险、计算机输入设备的姿态与运动传感器,以及汽车姿态控制系统的传感器等,这些都是大量例子的一部分。

  加速度检测元件通常是差动电容,电容的一个极板被硅弹簧悬挂在其它两个上方。加速度造成被悬挂极板的偏移,从而改变了两个电容极板之间的相对电容,于是也改变了通过信号的相对幅度。正确设计与制造的这类结构实体是敏感的、精确的和耐久的。但它们需要校准。施加电压的变化与环境温度都可以改变器件的灵敏度,并且每个传感器在 0g 时都有一个偏移读数,用户必须作测量。

  Analog Devices 的业务发展经理 Bob Scannell 说,在大批量应用中,这个需求不成问题。如果使用数十万个或数百万个传感器,建立一种校准工具不会有很大成本,工具连接着传感器,并在一个温度室内用预知速率对它们作校准。但是,对于工业领域中的较低批量应用,用片上测试仪器对器件作预先校准就很有意义了(图 A)。Scannell 说:“预校准消除了使用的障碍。”

  例如,在 MEMS 器件中嵌入一个温度传感器和一个微控制器,供应商就可以预先装载温度补偿表,使芯片立即去除由于温度造成的变化。同样,固件可以使芯片经过一个自动归零过程,建立一个系统中的基准水平面,为 MEMS 结构提供电子激励,并将输出与一个已知基准作比较,完成一次快速的合格/不合格测试。

  在这些例子中,都值得为硅片上测试仪器做投入,这不仅是因为没有其它方法能够完成测量或降低昂贵的测试成本,也是为了让器件更容易使用,从而打开新的市场。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top