信号采样定理:三个条件只要满足两个
采样定理解决的问题是确定合理的采样间隔△t以及合理的采样长度T,保障采样所得的数字信号能真实地代表原来的连续信号x(t)。
衡量采样速度高低的指标称为采样频率fs。一般来说,采样频率fs越高,采样点越密,所获得的数字信号越逼近原信号。为了兼顾计算机存储量和计算工作量,一般保证信号不丢失或歪曲原信号信息就可以满足实际需要了。这个基本要求就是所谓的采样定理,是由Shannon提出的,也称为Shannon采样定理。
Shannon采样定理规定了带限信号不丢失信息的最低采样频率为
式中fm为原信号中最高频率成分的频率。
采集的数据量大小N为
因此,当采样长度一定时,采样频率越高,采集的数据量就越大。
使用采样频率时有两个问题需要注意。
-
正确估计原信号中最高频率成分的频率,对于采用电涡流传感器测振的系统来说,一般确定为最高分析频率为12.5X,采样模式为同步整周期采集,若选择频谱分辨率为400线,需采集1024点数据,若每周期采集32点,采样长度为32周期。
-
同样的数据量可以通过改变每周期采样点数提高基频分辨率,这对于识别次同步振动信号是必要的,但降低了最高分析频率,如何确定视具体情况而定。
采样定理解析
采样定理实际上涉及了3个主要条件,当确定其中2个条件后,第3个条件自动形成。这3个条件是进行正确数据采集的基础,必须理解深刻。
条件1:采样频率控制最高分析频率
采样频率(采样速率)越高,获得的信号频率响应越高,换言之,当需要高频信号时,就需要提高采样频率,采样频率应符合采样定理基本要求。
这个条件看起来似乎很简单,但对于一个未知信号,其中所含最高频率信号的频率究竟有多高,实际上我们是无法知道的。解决这个问题需要2个步骤,一是指定最高测量频率,二是采用低通滤波器把高于设定最高测量频率的成分全部去掉(这个低通滤波器就是抗混滤波器)。现实的抗混滤波器与理论上的滤波器存在差异,因此信号中仍会存在一定混叠成分,一般在计算频谱后将高频成分去掉,一般频谱线数取时域数据点的1/2.56,或取频域幅值数据点的1/1.28,即128线频谱取100线,256线频谱取200线,512线频谱取400线等等。
采样过程示意图
抗混滤波器的使用主要是针对频谱分析的,对于涉及相位计算的用途反而会引入相位误差。几乎所有的滤波器的相位特性远比幅值特性差。
为说明该条件,我们举例进行说明。
① 要想在频谱中看到500Hz的成分,其采样频率最少为1000Hz。
② 若采样频率为32点/转,频谱中最高线理论上可达到16X。
条件2:总采样时间控制分辨率
频谱的分辨率(谱线间隔)受控于总采样时间,即
其中△f为频谱分辨率,T为总采样时间。
① 如果采样总时间为0.5秒,则频谱分辨率为2Hz;
② 若区分6cpm(0.1Hz)的频谱成分,则总采样时间至少为10秒;
③ 对于总采样时间为8转的时间信号,频谱分辨率为1/8X。
条件3:采样点数控制频谱线数
解释这个条件,需要对FFT计算频谱的过程有一个了解。如果对于一个2048点的时间波形数据,我们可以获得2048点频域数据——1024线频谱(每条谱线有两个值,直接值和正交值,或者说幅值和相位两个值)。
对旋转机械来说,频谱仅仅画出了FFT复数输出的幅值部分,对于相位部分一般不画,因此频谱中的线数最多为时域点数的一半,考虑到混叠的影响,频谱线数一般会低于时域数据点数。
总结
采样定理是实现正确采样的基准,上述3个条件中,可以根据需要设置其中2个条件,第3个条件就会自动固定。
① 如果采样总时间为0.5秒,想获得3200线频谱,则有
条件2:
条件3:3200线频谱实际需要4096点频谱数据(考虑到混叠问题),8192点时域数据
② 若在频谱上能区分0.2Hz间隔的频率成分,频谱确定为800线,则有
条件2:
条件3:800线频谱实际需要1024点频域数据,2048点时域数据
③ 若在频谱上能区分0.1Hz间隔的频率成分,且能在频谱上最大看到180Hz,则有
条件1:
条件2:
因此,按不低于360点/秒的采样速率采集10秒钟,可采集时域数据最少3600点。
为方便FFT计算,数据点数应为2的整数次幂,与3600最接近的数值是4096,由此可获得2048点频域数据,即可获得1600线频谱。1600线、频率间隔为0.1Hz的频谱最高分析频率为160Hz,显然不能满足需要。
4096下一个2的整数次幂的数值是8192,由此可获得3200线的频谱,其最高分析频
- 如何解决卫星电视信号被干扰(10-06)
- 短波频率自适应通信的发展及信号监测(04-20)
- 3G移动终端基带信号处理器设计与实现(01-09)
- 如何做好GSM信号覆盖优化?(05-26)
- 剪裁易拉罐增强WiFi信号(05-07)
- 如何解决Wi-Fi信号干扰(05-10)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...