声探测技术在反狙击系统中的应用
这就是说,在相关前,利用小波分别对信号x1(t)和x2(t)进行滤波。因为小波加权相对经典加权不需要信号和噪声的先验知识,这也可说在x1(t)和x2(t)相关后再用小波变换处理其相关函数Rx1x2(τ)。
2.2 定位算法
声探测定位技术是利用目标发出的噪声来对目标进行定位的。如何设计性能优良、结构简单合理的声阵是被动声定位的关键技术之一。传声器阵列可分为线阵、面阵和立体阵。线阵结构简单,但线阵只能对阵列所在直线为界的半个平面进行定位。面阵可以在整个平面对目标进行定位,也可以对阵列所在平面为界的半个空间进行定位。立体阵则可以对整个空间进行定位,但其算法要复杂的多。从实际应用角度考虑,采用立体正方形阵来进行目标定位。
立体阵声探测定位系统传声器的布置如图3所示。其中S表示目标点声源,Ml,M2,M3和M4分别表示4个传声器。采用直角坐标系表示,4个传声器位于x0y平面上。设基阵边长为L,M1,M3高为h,则传声器的坐标分别为M1(L/2,L/2,h),M2(L/2,L/2,0),M3(L/2,一L/2,h),M4(L/2,一L/2,0)。目标点声源的坐标为(x,y,z)。S点距原点距离为r,目标方位角为ψ,仰角为θ,设声源S到M1,M2,M3和M4的距离分别为r1,r2,r3和r4。并规定dij表示传声器Mi与Mj距点声源的距离差,即:
在直角坐标系中,可以得到如下方程组:
3 仿真
由于小波变换中所用基小波具有不惟一性且在小波变换中采用不同的小波基分析同一个问题会产生不同结果,则基于小波变换的广义相关时延估计法存在最优小波基的选择问题。这里主要是通过用小波分析方法处理信号的结果与理论接触的误差来判定小波基的好坏,并由此选定小波基。该仿真在分析所有基小波特点并进行大量的、不同条件下仿真实验后,确定用dbN小波作为该时延估计法的基小波(选用db8,如图5所示)。需要说明的是基小波symN和coifN与dbN具有相似性,所以这里也给出基于sym4和coif5小波的仿真图,如图5所示。
为观察方便,由相关运算引起的仿真输出互相关函数在时间轴上平移了500个点在图中都没有减去。也就是说实际估计延迟时间应该等于输出互相关函数峰值对应延迟时间减去相关运算点数。
该仿真采用非平稳信号s(t)=2sin(2xft+qt),加入均值为零、方差为常数的高斯白噪声,其中f=30,q=4。运算点数为L=500,延迟点数为D=48。
对比各图可知基于小波变换的广义相关时延估计法不仅取消了直接相关时延估计法的假设条件,而且提高了时延估计精度,增加了时延估计的方法,扩大了时延估计的应用范围。
4 结 语
概述了声波定位技术在反狙击系统中的应用,分析了系统的组成部分,提出基于小波变换的广义相关时延估计方法,克服了传统的相关时延估计法的缺点,提高了时延估计精度和应用范围。该方法的缺陷是不能在每一个尺度上都很好地估计时延,同时有必要从理论上证明时延估计的最佳尺度。该系统的制作方法同样适用于反坦克及反直升机系统。
- 地下管线探测技术与探测方法(10-02)
- 诊断X射线剂量仪的剂量探测技术(03-11)
- 非接触式光学探测技术的发展(05-29)
- 如何在集成系统中测量温度(11-09)
- 基于CAN总线的GaAs光电阴极制备测控系统(07-27)
- 尽可能提高测试系统利用效率的三种策略(10-22)