微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 基于CAN总线的GaAs光电阴极制备测控系统

基于CAN总线的GaAs光电阴极制备测控系统

时间:07-27 来源:邹继军 冯林 林刚勇 常本康 点击:

0 引言

  GaAs光电阴极是一种负电子亲和势光电阴极,具有量子效率高、发射电子能量和角度分布集中的优点,因而在微光像增强器、半导体敏感器件、自旋极化电子源等众多领域得到了广泛的应用[1],但GaAs光电阴极的制备过程却极为复杂,对制备工艺和条件都有严格要求。目前GaAs光电阴极的制备都主要依赖熟练操作人员进行手工操作,这种操作方式不尽浪费大量人力物力,而且制备质量和效率得不到保证。而在制备过程中普遍采用的在线光谱响应测试仪[2],只能用于阴极制备后的光谱响应曲线测试,评估阴极的制备质量,它对阴极制备过程中的许多其它信息量,如真空度、铯源和氧源电流等,都没有实时采集功能,更没有对铯(氧)源电流的计算机控制和制备过程的自动化,从而大大的制约了我国GaAs光电阴极制备工艺的理论研究、制备质量和效率的提高。本文利用CAN总线可靠性高、成本低、配置灵活和传输速度快等优点[3~5],设计了一套基于CAN总线的GaAs光电阴极制备测控系统,可实现上述信息的实时测试和铯(氧)源电流的自动控制。

  1 测控系统组成

  根据GaAs光电阴极制备工艺的要求,我们设计了如图1所示的GaAs光电阴极制备测控系统原理框图。该测控系统由三大部分构成:超高真空激活系统、计算机和外围测控设备,其中超高真空激活系统是用于GaAs光电阴极制备(加热净化和铯氧激活)的,制备过程中的多种信息量可通过外围测控设备与计算机相连。测控设备共分两部分,一部分完成光电流、光谱响应曲线的测试,另一部分完成真空度的测试以及铯(氧)源电流信号的测试和控制。

  第一部分相当于一个光谱响应测试仪,光谱响应曲线测试时,先由计算机控制光栅单色仪输出一定波长的单色光并照射到阴极面,阴极产生微弱的光电流,光电流放大后经A/D转换为数字信号,计算机将该信号和对应的单色光辐射功率进行数据处理,就得到阴极的光谱响应曲线[2]。这一部分中没有用到CAN总线,本文中将不作介绍,重点介绍的是第二部分。在第二部分中,真空度、铯(氧)源电流信号是通过CAN总线实现测控的,测控信号通过USB-CAN转换器与计算机相连。这部分的设计,结合了CAN与USB总线的优点,从而能实现更灵活的通信任务和更强大的信号测控功能。

图1 GaAs光电阴极制备测控系统原理框图

 2 测控系统硬件设计

  2.1 USB-CAN转换器硬件设计

  USB-CAN转换器实现USB与CAN两种总线之间的协议转换,如图2所示为其结构框图。图中微控制器89C52负责转换器的监控任务以及CAN与USB总线的通信任务。CAN控制器接口电路采用SJA1000和82C250,USB控制器接口电路采用USB通用设备接口芯片CH372。在微控制器中,USB与CAN总线报文的接收均采用中断方式,这种方式能尽量减少时延,提高系统实时通信能力。

  2.2 多信息量测控设备硬件设计

  原有系统的真空计和模拟电源等设备都是独立工作的,不具有和计算机通信的能力。为了实现真空度和铯(氧)源电流信息的测控,同时也为了节省成本,本文采用的方案是在原有设备上增加一个多信息量测控模块,使之具有数字化测控和通信功能。多信息量测控模块的任务是将设备显示的信号取出并传输给计算机或将计算机发来的控制命令传输给设备,所以实际上测控模块电路由两部分构成,一部分完成真空度、铯(氧)源电流信息的测试,另一部分实现铯(氧)源电流大小和通断的控制。

  在真空度、铯(氧)源电流信息的测试方面,为了保持采集数据与设备显示数据的一致性,采用的方法是将设备数码管上显示的信息直接取出。真空计和模拟电源的显示均由3位数码管构成,所以两者可以采用相同的测试电路。如图3所示为多信息量测试模块结构框图,图中真空计或电源的3位数码管分别与一片双四选一的电子开关CD4052相连,微控制器从锁存器输出地址选通信号,控制CD4052依次输出数码管8段显示信息中的2段,连接到比较器LM358上,经比较转换为标准的逻辑电平后输出给微控制器,最后微控制器将3个数码管的信号组合在一起,得到真空计或电源上显示的数据。在这里采用比较器的主要优点是可以根据不同数码管的驱动电平灵活的调整比较电压,而且输出逻辑电平稳定,从而使测试电路具有更好的适用性。采集到显示信息后,可在微控制器控制下,通过CAN总线传输给计算机

 图2 USB-CAN转换器结构框图

 图3 多信息量测试模块结构框图

原有的系统中,铯(氧)源电流大小的控制是通过手动调节电源的模拟电位器来实现,而为了实现计算机对电流大小的数字化控制,最直接的办法就是用数字电位器取代电源的模拟电位器,按此方案设计的电

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top