有射频基础后让你秒懂“史密斯圆图”的真谛
不管多么经典的射频教程,为什么都做成黑白的呢?让想理解史密斯原图的同学一脸懵逼。
这是什么东东?
今天解答三个问题:
1、是什么?
2、为什么?
3、干什么?
1、是什么?
该图表是由菲利普·史密斯(Phillip Smith)于1939年发明的,当时他在美国的RCA公司工作。史密斯曾说过,"在我能够使用计算尺的时候,我对以图表方式来表达数学上的关联很有兴趣"。
史密斯图表的基本在于以下的算式。
当中的Γ代表其线路的反射系数(reflection coefficient)
即S参数(S-parameter)里的S11,ZL是归一负载值,即ZL / Z0。当中,ZL是线路本身的负载值,Z0是传输线的特征阻抗(本征阻抗)值,通常会使用50Ω。
简单的说:就是类似于数学用表一样,通过查找,知道反射系数的数值。
2、为什么?
我们现在也不知道,史密斯先生是怎么想到"史密斯圆图"表示方法的灵感,是怎么来的。
很多同学看史密斯原图,屎记硬背,不得要领,其实没有揣摩,史密斯老先生的创作意图。
我个人揣测:是不是受到黎曼几何的启发,把一个平面的坐标系,给"掰弯"了。
世界地图,其实是一个用平面表示球体的过程,这个过程是一个"掰直"。
史密斯原图,巧妙之处,在于用一个圆形表示一个无穷大的平面。
2.1、首先,我们先理解"无穷大"的平面。
首先的首先,我们复习一下理想的电阻、电容、电感的阻抗。
在 具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实际称为电阻,虚称为电抗,其中电容在电路中对交流 电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。 阻抗的单位是欧姆。
R,电阻:在同一电路中,通过某一导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比,这就是欧姆定律。
(理想的电阻就是 实数,不涉及复数的概念)。
如果引入数学中复数的概念,就可以将电阻、电感、电容用相同的形式复阻抗来表示。既:电阻仍然是实数R(复阻抗的实部),电容、电感用虚数表示,分别为:
说明:负载是电阻、电感的感抗、电容的容抗三种类型的复物,复合后统称"阻抗",写成数学公式即是:阻抗Z= R+i(ωL–1/(ωC))。其中R为电阻,ωL为感抗,1/(ωC)为容抗。
(1)如果(ωL–1/ωC) > 0,称为"感性负载";
(2)反之,如果(ωL–1/ωC) <>
我们仔细看阻抗公式,它不再是一个实数。它因为电容、电感的存在,它变成了一个复数。
电路中如果只有电阻,只影响幅度变化。
我们通过上图,我们知道,正弦波的幅度发生了变化,同时,相位也发生了变化,同时频率特性也会变化。所以我们在计算的过程中,即需要考虑实部,也需要考虑虚部。
我们可以在一个复平面里面,以实部为x轴、以虚部为y轴,表示任意一个复数。我们的阻抗,不管多少电阻、电容、电感串联、并联,之后,都可以表示在一个复平面里面。
在 RLC 串联电路中,交流电源电压 U = 220 V,频率 f = 50 Hz,R = 30 Ω,L =445 mH,C =32 mF。
在上图中,我们看到通过几个矢量的叠加,最终阻抗在复平面中,落在了蓝色的圆点位置。
所以,任意一个阻抗的计算结果,我们都可以放在这个复平面的对应位置。
各种阻抗的情况,组成了这个无穷大的平面。
2.2、反射公式
信 号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。对于信号来说,它不会区分到底是什 么,信号所感受到的只有阻抗。如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电 阻,电容,电感,过孔,PCB转角,接插件),信号都会发生反射。
钱塘江大潮,就是河道的宽度变化引起了反射,这跟电路中阻抗不连续,导致信号反射,可以类比。反射聚集的能量叠加在一起,引起的过冲。也许这个比喻不恰当,但是挺形象。
那么有多少被反射回传输线的起点?衡量信号反射量的重要指标是反射系数,表示反射电压和原传输信号电压的比值。
反射系数定义为:
其中:Z0为变化前的阻抗,ZIN为变化后的阻抗。假设PCB线条的特性阻抗为50欧姆,传输过程中遇到一个10
- WLAN 需要规划 掌握射频通信知识(01-03)
- 关于UART通信端口上射频干扰的研究(02-09)
- 基于WiMAX技术的5.8G无线专网射频系统设计(10-06)
- XRRU数字射频拉远设备助力无线网络建设(08-01)
- 灵巧划分在WIMAX射频中的应用(03-06)
- 使用OBSAI协议搭建多模基站的基带射频接口(06-08)