风力发电机实验测试系统的设计与实现
关键词: 数据采集; DSP; 信号调理
风能是一种用之不竭、清洁的可再生能源,在众多可再生能源中具有很大潜力。我国风力资源丰富,研究发展适合风力发电使用的风力发电机,具有重要的理论意义与实用价值[1]。风力发电机研制成功后,为了保证风力发电机的正常运行与安全,出厂前的测试显得至关重要。目前的风力发电机测试系统中,测试参数单一,需用多个测试设备分别测试不同的参数。
针对目前风力发电机测试设备的缺点,本文设计了一套基于数字信号处理器TMS320C5416的功能全面的风力发电机测试系统,解决了以往测试仪器功能单一的问题。其中数据采集部分是整个系统高精度测量的关键所在。本数据采集部分以THS1206和ADS7864为核心,采用CPLD和DSP对两种采集芯片进行逻辑控制与数据传输,同时采集22个通道的数据,分别为8路交流电压、8路交流电流、2路直流电压、2路直流电流和2路4~20 mA信号。由于本测试系统需对交流部分进行频谱分析,对于需要进行频谱分析部分采用最高速率为6 MS/s的THS1206,不需进行频谱分析的部分采用可同步采样的ADS7864。采样转换精度为12 bit,利用前端信号调理电路可将待测信号调理到-5 V~+5 V,这种结构很好地满足了风力发电机测试系统的精度高、速率快、简单可靠的要求。
1 系统总体设计
本文的风力发电机测试系统总体实现框图如图1所示,主要组成部分为DSP和2种A/D芯片(分别为4片THS1206和4片ADS7864)。图中,8路0~1 500 V的交流电压和8路0~10A的交流电流首先经过交流电压互感器和交流电流互感器后分别变为-5 V~+5 V交流电压和0~5 A的交流电流。此外,本系统需测试的还有2路0 ~1 500 V直流电压,2路0~100 mA直流电流,2路4~20 mA标准信号。22路需测试的信号全部经过各自的信号调理电路,将电压范围调理到A/D芯片适用的范围。核心器件CPU采用TI公司的TMS320C5416, TMS320C5416是一种低功耗、高性能的16位定点DSP芯片,速度为160 MIPS,集实时信号处理能力和控制器外设功能于一身。满足测试系统要求,负责数据实时采集与处理。大规模可编程逻辑器件CPLD主要完成系统各个功能模块的总线(数据总线、地址总线、控制总线)管理。时钟电路可方便显示整个测试系统的采样开始与结束时间,可具体显示到年、月、日、时、分、秒,方便观看。LCD液晶显示屏可方便观测频谱分析的谐波波形。键盘作为整个测试系统的一个输入设备,可控制系统启动。TMS320C5416本身内部只有16 KB的ROM和128 KB的RAM,由于本测试系统需采集大量数据进行测试,所以有必要进行存储器外扩来进行数据及时存储,其中SRAM用于存储实时动态数据,Flash存储的数据可防止掉电时丢失,E2PROM用于存储采样频率及前端互感器的变比等。通过USB接口连接PC机,用于保存每次的测量结果,方便管理与打印,利于查找。
2 测试系统硬件设计
2.1 THS1206与TMS320C5416的接口电路
THS1206是TI公司推出的可编程、多通道、低功耗、内置FIFO的12位并行高速A/D转换芯片,功耗只有220 mW,最高采样速率可达到6 MS/s,4通道同时采样单通道采样速率可达到1 MS/s以上,完全满足本系统需要进行频谱分析的高速率要求[3]。
THS1206模数转换器主要特点是四个模拟通道可同时实现无相差采样,即可同时由采样方式转换到保持方式下。四个模拟通道可设置为3种方式:(1)四个单通道输入;(2)两个差分通道输入;(3)两个单通道输入和一个差分通道输入。THS1206提供了三个参考电压(1.5 V、2.5 V、3.5 V)。它的许多引脚功能是可编程的,这使得其与处理器的硬件接口很灵活,转换结果以并行方式通过数据总线的D0~D11位来传送。
本系统THS1206采用4个单通道输入模式,图2为一片THS1206与TMS320C5416型DSP的接口电路。DSP采用复合引脚R/W来进行读写操作,THS1206的可编程引脚WR与DSP的R/W引脚连接。THS1206的RD引脚通过连接一个电阻上拉为高电平。THS1206有两个片选信号CS0和CS1。TMS320C5416通过IOSTRB引脚选择外围空间,与THS1206的CS0相连,地址线A17与CS1相连。THS1206的数据总线(D0~D11)可以直接与TMS320C5416的(D0~D11)数据总线相连,无需经过缓冲和电压转换。测试系统由DSP定时器提供转换时钟信号。DSP采用中断方式读取转换后的数据。THS1206的DATA-AV直接与DSP的INT2相连。
- LMS Test.Lab简化风机变速箱的测试(11-30)
- 面向信号自动测试系统信号组件的设计(04-17)
- 飞机执行器寿命测试(06-14)
- 基于发动机性能虚拟仪器测试系统设计(05-12)
- 选择硬件在环(HIL)测试系统I/O接口(06-12)
- 基于虚拟仪器的机载陀螺仪测试系统研究(08-03)