微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 风力发电机实验测试系统的设计与实现

风力发电机实验测试系统的设计与实现

时间:05-20 来源:互联网 点击:

由于本文的风力发电机测试系统需要进行频谱分析的是交流部分,8路0~1 500 V的交流电压和8路0~10 A交流电流,用于交流部分频谱分析的A/D芯片THS1206为4通道输入芯片,所以本系统需用4片THS1206。
2.2 ADS7864与TMS320C5416接口电路
 ADS7864是德州仪器(TI)公司Burr-Brown产品部推出的快速6通道全差分输入的双12位A/D转换器。能以500 kS/s的采样速率进行6通道同时采样,特别适合于数据采集系统中电力参数的采集[4]。
 图3为TMS320C5416与一片ADS7864的接口电路,6个差分模拟输入通道CHA0、CHA1、CHB0、CHB1、CHC0和CHC1输入的模拟信号被ADS7864的6个采样保持器保持,当ADS7864对采样的6路信号转换完毕后,ADS7864的BUSY引脚产生中断信号,与DSP的INT0引脚相连表示转换完毕,DSP可以通过中断程序对转换完毕的采样信号进行读取与处理。ADS7864的A2、A1、A0为地址和模式控制端,用于选择数据的读出方式,这里A2A1A0=110,输出模式为循环方式。BYTE信号用于决定输出数据宽度,令其为低电平,一次输出16位信号(DB15~DB0),CLOCK信号用作A/D转换所需的时钟,这里选择时钟的最高工作频率为8 MHz,由CPU的时钟提供。控制三组输入通道的采样/保持信号HOLDA、HOLDB、HOLDC连接在一起,由CPLD进行控制。

由于TMS320C5416的I/O口工作电压是3.3 V,ADS7864的数字端工作电压是5 V,所以它们之间必须连接由5 V转换到3.3 V的电平转换芯片74LVC16245。本文风力发电机测试系统需要同步测试22路信号,ADS7864为6通道差分输入A/D转换芯片,所以本系统需用4片ADS7864芯片。22路信号的同步采集由CPLD控制每片ADS7864的HOLDX引脚为低电平来实现。
3 测试系统软件设计
3.1 系统整体软件设计
  本文风力发电机测试系统主程序流程图如图4(a)所示。首先进行系统初始化,根据DSP芯片固有的功能和特征,进入主程序的入口设置,所有寄存器清零,进行程序存储器ROM区和数据存储器RAM区的初始化,中断矢量设置等主程序运行前的准备工作,以及检查系统电源,监视芯片上电后的DSP芯片内的硬件运行情况。当DSP芯片运行正常后,进入测试系统软件的主程序运行,使用默认配置参数来设定系统的存储器资源和总线占用资源。

  系统在默认配置参数正常的情况下,开始定时器设置,系统可通过定时器的设置确定采样时间。在一次采样结束后,首先进入数据预处理,再将数据通过USB接口向上位机传送。同时需要进行频谱分析的数据在液晶显示屏里显示出来。每次采样及数据处理结束后,都要对数据的采样数量进行判断,如果条件满足,则系统数据采样处理过程结束。如果不满足,还要继续进行定时器设定时间的判断,如果定时器设定时间到,则进行新一轮的采样过程,否则进行等待循环状态。
3.2 A/D芯片的采样控制软件设计
  在启动系统采样工作前,系统首先要确定采集的数据是否要进行频谱分析,由CPLD进行软件编程设置,通过控制A/D芯片的片选信号,具体选择哪种A/D芯片进行采样。通过定时器中断启动系统的采样。图4(b)为A/D芯片采样控制流程图,其中A/D芯片ADS7864的同步采样是通过CPLD控制其HOLDX引脚为低电平实现的,当采样工作结束后,A/D芯片的INT端口会输出低电平信号给DSP的I/O端口。在程序中设置中断,一旦检测到I/O口工作结束的信号,通过DSP的地址总线选通A/D芯片,并输出读数据命令给A/D芯片,依次通过数据总线将结果读入DSP。
4 滤波试验测试
  众所周知,风力发电机并网运行会给电网带来影响,谐波污染是其中之一。任何一种风力发电机并网运行都会引起电压和电流的畸变[5]。本文风力发电机测试系统前端22路模拟输入信号也会伴随产生奇次谐波。为了滤除掉这些干扰的奇次谐波,本文采用内部软件方法有效地滤除了这些谐波。试验中,输入部分为风力发电机频率为50 Hz的基波,伴随基波的还有150 Hz、250 Hz等奇波频率部分。要求滤除这些奇次谐波,只保留50 Hz的基波部分。具体滤波过程如下:首先应用MATLAB软件进行滤波仿真,设计一个IIR(Infinite Impulse Response)型数字滤波器,滤波器的阶数为3,观察仿真波形图,如果结果可行,则进行DSP实现。
  通过TMS320C5416的JTAG仿真接口,利用DSP的软件开发平台CCS(Code Composer Studio)进行实验测试。输入50 Hz的基波和相伴产生的奇次谐波。采样频率为1 500 Hz,采样点为256点。图5为利用CCS的绘图工具绘制的采集到的256点数据的时域与频域波形,图5(a)为滤波前输入信号的时域图,图5(b)为滤波后信号的时域图,图中横坐标为采样时间,纵坐标为输入波形的幅度。由图5(b)滤波后波形可以看出,滤波效果明显,只剩下频率为50 Hz的基波部分,干扰的奇次谐波被有效地滤掉了。图5(c)、图5(d)为滤波前后输入信号的频域图,图5(c)中可以看出,除了50 Hz基波部分外,还伴随很多干扰的谐波成分,横坐标为信号周期,即频率倒数,纵坐标为信号的幅度,从图5(d)滤波后的频谱图可以看出,大部分干扰谐波被滤掉,效果明显,由于本实验采用的滤波器阶数仅为3阶,如果再提高滤波器阶数,则滤波效果会更加明显。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top