MATLAB应用在基于噪声检测的图像均值去噪法
时间:05-27
来源:互联网
点击:
而如果存在噪点,那么在原图像素和噪点之间的灰度值会发生突然的变化。基于此,首先取待检测点的上、下、左、右四个邻域大小为3×3,计算各邻域的平均值,如果四个邻域的均值都与待检测点的差的绝对值大于既定的阈值,则判断该点为噪点,反之,有一个邻域的均值与待测点的差小于阈值。则判断该点为正常像素点。其中;阕值是我们根据图像的含噪情况人为设定的一个值,一般在100和200之问。同时。建立与待检测图像大小相同的矩阵,称为噪声标识矩阵。其中的点与原图像矩阵中的点一一对应。并预设该矩阵中的值全为1,如果一像素被判断为噪声,则置标识矩阵中相应元素为o.这样,就可以实现前面判断过程所得出的结果被后续的检测所使用,已经被判定为噪声的像素不再参与领域均值的计算。 这样,我们就可以用一个循环,来对图像矩阵中的每个像素逐个进行判断,方便地检测到了噪声点。 接下来,就可以利用中值滤波的方法,去除图像中的噪点了,将预先判断为噪点的图像矩阵中的点,如(a。b)=(70.S5)的点的值是230,与邻域点的均值的差大于两值150。因此翔断它是一个噪点。这样,我们就用它邻域内的八个点中有效的点来取均值代入。依次执行,挨个计算、代人。这样就得到了一个新的图像数据矩阵,最后我们用i眦Ilow函数显示处理后的图像(见图3)。可以看到。效果非常明显。 4 结语 去噪后的图像不仅噪声强度受到限制,而且图像细节得到了最大限度的保持,解决了妨碍人们获取图像信息的同胚。在航空航天、通信工程、生物医学、军事公安、文化艺术等领域都具有一定意义。 
- 基于Hilbert变换的电压凹陷检测方法(06-20)
- 牛奶微生物检测仪的设计 (06-13)
- 基于MATLAB的皮肤听声器系统的研究(08-20)
- 线性预测及其Matlab实现(04-22)
- 在WaveMaster中创建自定义运算函数(06-17)
- 实时与非实时综合应用在多个信号的测量(06-25)
