基于虚拟仪器及DSP的静电感应式电子围栏设计
此时AIC23B为从设备,MCBSP2的接收时钟与AIC23B的SCLK信号全部由MCBSP2的时钟提供;与AIC23B进行数据接口的MCBSP0工作在从属模式下,此时AIC23B为主设备,MCBSP0的发送与接收时钟均由AIC23B的BCLK信号提供。
3 软件算法设计及仿真
软件设计在LabWindows平台下进行,在实验室及现场应用中均得到了正确的仿真结果,并且具有很强的适应性和可移植性。
3.1 数据采集
本软件用声卡完成数据采集,在LabWindows/CVI下对声卡进行数据采集的控制。LabWindows/CVI下声卡的控制可以直接调用自带函数,也可以调用VC++中的API函数,本设计调用了API函数。声卡采集数据流程如图6所示。
3.2 数据处理
系统通过检测接收端电压的变化幅度来判断是否发出报警信号,因此要对接收到的交流信号进行数字整流,以便判断电压的变化幅度。数据处理框图如图7所示。
3.2.1 带通滤波器的设计
在仿真程序中带通滤波器直接调用LabWindows/CVI中的Bw_BPF的函数。但在DSP中数字带通滤波器必须自己设计,IIR滤波器的实现结构分为直接I型,直接Ⅱ型,级联型和并联型。
直接I型的结构需要2N级延迟单元,直接Ⅱ型与I型相比节省了1/2延迟,即需要N级延迟单元,是最常用的IIR滤波器结构之一。如图8是直接Ⅱ型结构图。
IIR滤波器的设计工具,除了可以利用一些专用的滤波器设计工具程序外,也可以利用Matlab来设计。
3.2.2 数字整流以及均值滤波算法
数字整流是将一个数据包中的数据取平均值。由于数字整流后的波形不是很平滑,震动幅度比较大,因此必须再通过一次中值滤波得到比较平滑波形,以便后续的数据处理。均值滤波流程图如图9所示。
3.3 系统仿真与分析
3.3.1 仿真结果
图10是没有人接近感应线时的波形显示,图11为有人接近感应线后的波形显示。两图对比,图11中的波形有明显的下降,波形微分值也发生了相应的变化。
3.3.2 系统的抗干扰性分析
当有小动物接近感应线圈时,接收线的电压幅度也会下降,但是由于人体对感应线圈感应电容的影响远远大于小动物,因此接收线电压下降幅度远远小于人接近时的下降幅度,所以设定几个不同报警门阈值,就能将人和其他动物区别开来。在雨雪天由于空气湿度发生变化,空气介电常数也发生了变化,导致系统的分布电容发生变化,但是这个变化极小,对本系统几乎无影响。
由于系统基于电磁感应原理,会受到外部电磁干扰,尤其是相邻系统间的干扰。为了解决这个问题,在相邻系统的发射线上加了不同频率的方波信号,避免了相邻系统间的干扰。本设计中,选用了3 kHz,5 kHz,7 kHz的方波信号,相邻系统的发射端得到不同的发射信号。接收端收到信号以后采用了以发射端信号频率为中心频率、带宽为1 kHz的带通滤波,滤波后去掉干扰信号得到有用信号。
3.3.3 单系统防护距离
随着感应线圈长度的变化,线圈和地之间的分布电容也会产生相应的变化,感应线圈越长,分布电容越大。在感应线很长时,人接近感应线后,分布电容的变化较小,会导致系统灵敏度下降,所以单系统的防护距离不宜太长,限定150 m内为宜。
4 结语
经过软件仿真和现场测试,得到了正确的数据。在进行了详细的数据分析以后,证明整个系统的设计思路和计算方法是正确的。基于虚拟仪器及DSP的静电感应式电子围栏系统的前端围栏带有高压脉冲电给入侵者极大威慑,有形围栏给入侵者带来了很多阻碍,若强行人侵,则系统自动发出声、光报警,并可以与其他安防系统联动(如防盗报警主机、视频监控系统、110报警等)。该电子围栏能适应各种环境,且误报率极低,克服了传统的红外、微波等技术的缺陷,报警基本不受气候、地形、树木、小动物等影响。
- 基于DSP与AD9852的任意信号发生器 (11-03)
- 多通道数据采集系统(11-12)
- 基于DSP和以太网的数据采集处理系统(01-01)
- 用矢量信号分析仪检测非线性失真(04-29)
- 利用虚拟仪器进行数字信号处理设计(02-11)
- 基于μC/OS-II的电力参数监测仪设计(02-23)