超低电压能量收集器采用热电发生器为无电池无线传
利用后备电池的超低功率应用 图 14:具有后备电池的能量收集器 能量存储替代方案 热量收集应用需要自动极性 图 15:自动极性能量收集器供电的无线传感器节点 LTC3109 也可以针对单极性操作进行配置,采用单个变压器 (与 LTC3108 相似) 来适应那些需要尽可能低的启动电压和尽可能高的输出电流的应用。图 17 中示出的电路可在仅 15mV 的电压下启动,该电压是采用所示的 TEG 在小于 1ºC 的温差条件下产生的。在10ºC 温差时,它能够提供稳定的 5V 电压 (在 0.74mA 电流下),从而可输送 3.7mW 的已调稳态输出功率。在相同的条件下,这几乎达到了 LTC3108 输出功率的两倍,如图 18 所示。 图 17:采用 LTC3108 的单极性转换器能在仅 15mV 的电压条件下启动 需要注意:在单极性配置中,LTC3109 对 TEG 呈现出约 1Ω 的负载电阻,因此应选择一个具有非常低源电阻的 TEG 以实现优良的负载匹配,否则在单极性配置中使用 LTC3109 将毫无优势可言,这一点很重要。本例中所采用的 TEG 具有 1.0Ω 的标称源电阻,旨在实现最佳的功率传输。 结论
有些应用或许没有脉冲负载,但却可能需要连续工作。传统上,此类应用由一个小型主电池 (比如:3V币形锂电池) 来供电。假如功率需求足够低,那么这些应用就能够利用热能收集来连续供电,或者可以借助热能收集来极大地延长电池的使用寿命,从而降低维护成本。
图 14 示出了一种利用后备电池来驱动一个连续负载的能量收集应用。在该例中,所有的电子线路均全部由 2.2V LDO 输出来供电,且总电流消耗小于 200μA,只要 TEG 上至少存在 3ºC 的温度差,LTC3108 就能连续地给负载供电。在这些条件下,电池上没有负载。当可用的收集能量不够时,3V锂电池将无缝地“接管”并给负载供电。
对于那些选用可再充电电池来替代主电池以提供备份或能量存储的应用,图 14 中的二极管可以去掉,并用可再充电的镍电池或锂离子电池 (包括新型可再充电薄膜锂电池) 来替换锂电池。如果采用的是可再充电的镍电池,则其自放电电流必须小于 LTC3108 所能供应的平均充电电流。如果选用锂离子电池,则需要增设额外的电路以保护其免遭过度充电和过度放电的损坏。另外还有一种存储替代方案就是具有 5.25V 额定电压的超级电容器,例如:Cooper-Bussman PB-5ROH104-R。与可再充电电池相比,超级电容器的优势在于拥有更多的充 / 放电次数,而缺点则是能量密度低得多。
有些应用 (例如:无线 HVAC 传感器或地热供电的传感器) 对能量收集功率转换器提出了另一种独特的挑战。此类应用要求能量收集电源管理器不仅能够依靠非常低的输入电压来工作,而且能以任一极性工作,因为 TEG 上的 T 的极性可能改变。这是一个特别棘手的难题,而且,在几十或几百 mV 的电压条件下,二极管桥式整流器不是合适的选项。
LTC3109 是唯一适合克服这种从任一极性的能量源收集能量之挑战的器件。LTC3109 运用具 1:100 升压比的变压器,能以低至 ±30mV 的输入电压工作。LTC3109 与 LTC3108 的功能相同,包括一个 LDO、一个数字可编程的输出电压、一个电源良好输出、一个开关输出和一个能量存储输出。LTC3109 采用 4mm x 4mm 20 引脚 QFN 封装或 20 引脚 SSOP 封装。图 15 显示了 LTC3109 在自动极性应用中的一个典型例子。如图 16 所示,该转换器的输出电流随 VIN 变化的曲线说明,该器件在任一极性的输入电压时,都能同样良好地工作。

图 16:图 15 中转换器的输出电流随 VIN 变化的曲线

图 18:LTC3108 和 LTC3109输出功率的比较
LTC3108 和 LTC3109 能独特地在输入电压低至 20mV 时工作,或者以非常低的任一极性电压工作,提供了简单和有效的电源管理解决方案,能实现热能收集,以利用常见的热电器件为无线传感器和其他低功率应用供电。这些产品采用 12 引脚 DFN 或 16 引脚 SSOP 封装 (LTC3108 和 LTC3108-1) 和 20 引脚 QFN 或 SSOP 封装 (LTC3109),提供了前所未有的低电压能力和高集成度,可最大限度地缩减解决方案占板面积。LTC3108、LTC3108-1 和 LTC3109 可与现有的低功率单元式部件实现无缝连接,以支持自主型无线传感器并延长关键后备电池应用中的电池使用寿命。
- DDS函数信号发生器的优点(09-28)
- 利用测试排序仪器降低大批量元器件生产的测试成本(11-06)
- 在高精度时间间隔测量中隔离位误码率突发事件(11-06)
- 低调制指数频偏测量方法(03-03)
- 用矢量信号分析仪检测非线性失真(04-29)
- 简易函数信号发生器与计数器设计合二为一(10-21)
