运算放大器电路固有噪声的分析与测量
例 3.3 列出了输入参考电阻噪声的整个计算过程。请注意,本例中,电阻噪声的幅度与运算放大器噪声幅度相类似,因此将对输出噪声造成很大影响。
例 3.3:将电阻噪声转换为等效输入噪声电压
既然我们已计算出了所有噪声大小,那么接下来我们就可确定总噪声参考输入 (RTI) 。将所得的结果乘以噪声增益,即可计算出噪声参考输出。最后,我们将根据表 1.1 给出的转换系数来估算峰值对峰值的输出噪声(详情见例 3.4)。
例 3.4:计算总峰值对峰值输出噪声
本文总结与下文内容简介
在噪声系列文章中,本部分全面介绍了简单运算放大器电路噪声的演算过程。采用上述方法并根据产品说明书中的参数,便可估算出峰值对峰值的输出噪声。对示例中电路的配置情况而言,我们估算出的峰值对峰值输出噪声为 1.94mVpp。我们在随后几篇文章中还将参考上述示例,并测定本文通过测量与 SPICE 分析所得的输出噪声估算值确实是准确的。
尽管我们在此仅给出了简单电路配置情况下的计算方法,但该方法同样也适用于更复杂的电路。在以后的文章中,我们还将介绍如何用电路模拟软件包 (TINA SPICE)来进行噪声分析。不过,我们应注意到,在进行电路模拟之前必须先用手算分析方法进行计算,这样才能确保进行适当模拟。
致谢!
特别感谢以下 TI人员提供的技术意见:
Rod Bert,高级模拟 IC 设计经理
Bruce Trump,线性产品经理
Tim Green,应用工程设计经理
Neil Albaugh,高级应用工程师
参考书目
Robert V. Hogg 与 Elliot A Tanis 共同编著的《概率与统计推断》,第三版,麦克米兰出版公司 (Macmillan Publishing Co.) 出版;
C. D. Motchenbacher 与 J. A. Connelly 共同编著的《低噪声电子系统设计》,Wiley-Interscience Publication 出版。
关于作者:
Arthur Kay是 TI 的高级应用工程师。他专门负责传感器信号调节器件的支持工作。他于 1993 年毕业于佐治亚理工学院 (Georgia Institute of Technology),并获得电子工程硕士学位。他曾在 Burr-Brown 与 Northrop Grumman 公司担任过半导测试工程师。Art 的联系方式如下:kay_art@ti.com。
附录 3.1:电流噪声转换为电压噪声的演算过程;
附录 3.2:简单运算放大器电阻噪声转换为电压噪声的演算过程;
附录 3.2:电阻噪声转换为电压噪声的演算过程(续);
附录 3.2:电阻噪声转换为电压噪声的演算过程(续);
附录 3.3:简单运算放大器电路的电压噪声计算方程式;
附录3.4:简单运算放大器电路的电流噪声计算方程式;
附录 3.5:简单运算放大器电路的电阻与总噪声计算方程式。
- 对数放大器LOGl00的弱光检测电路设计(01-12)
- 基于STC89C52的程控恒流源的设计(12-23)
- 高精度直流电压测量的优化(07-22)
- 一种低温漂输出可调带隙基准电压源的设计(07-22)
- 线性光耦HCNR201在模拟电压测量中的应用(08-19)
- 新型交流数字电压表设计(08-16)