微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 基于AD9225的12位高速ADC的存储电路设计与实现

基于AD9225的12位高速ADC的存储电路设计与实现

时间:03-02 来源:互联网 点击:

在高速数据采集中,高速ADC的选用和数据的存储是两个关键问题。本文介绍一种精度为12位、采样速率达25Msps的高速模数转换器AD9225,并给出其与8位RAM628512存储器的接口电路。由于存储操作的写信号线是关键所在,故给出其详细的获取方法。

关键词 高速ADC 高速数据采集 AD9225

1 AD9225的结构

AD9225是ADI公司生产的单片、单电源供电、12位精度、25Msps高速模数转换器,片内集成高性能的采样保持放大器和参考电压源。AD9225采用带有误差校正逻辑的四级差分流水结构,以保证在25Msps采样率下获得精确的12位数据。除了最后一级,每一级都有一个低分辨率的闪速A/D与一个残差放大器(MDAC)相连。此放大器用来放大重建DAC的输出和下一级闪速A/D的输入差,每一级的最后一位作为冗余位,以校验数字误差,其结构如图1所示。


图1 AD9225结构图

2 AD9225的输入和输出

(1) 时钟输入

AD9225采用单一的时钟信号来控制内部所有的转换,A/D采样是在时钟的上升沿完成。在25Msps的转换速率下,采样时钟的占空比应保持在45%~55%之间;随着转换速率的降低,占空比也可以随之降低。在低电平期间,输入SHA处于采样状态;高电平期间,输入SHA处于保持状态。图2为其时序图。图2中:


图2 AD9225时序图

tch——高电平持续时间,最小值为18 ns;
  tcl——低电平持续时间,最小值为18 ns;
  tod——数据延迟时间,最小值为13 ns。

从时序图可以看出:转换器每个时钟周期(上升沿)捕获一个采样值,三个周期以后才可以输出转换结果。这是由于AD9225采用的四级流水结构,虽然可以获得较高的分辨率,但却是以牺牲流水延迟为代价的。

(2) 模拟输入AD9225的模拟输入引脚是VINA、VINB,其绝对输入电压范围由电源电压决定:

其中, AVSS正常情况下为0 V,AVDD正常情况下为+5 V。

AD9225有高度灵活的输入结构,可以方便地和单端或差分输入信号进行连接。采用单端输入时,VINA可通过直流或交流方式与输入信号耦合,VINB要偏置到合适的电压;采用差分输入时,VINA和VINB要由输入信号同时驱动。

(3) 数字输出

AD9225 采用直接二进制码输出12位的转换数据,并有一位溢出指示位(OTR),连同最高有效位可以用来确定数据是否溢出。图3为溢出和正常状态的逻辑判断图。


图3 溢出和正常状态的逻辑判断图

3 AD9225参考电压和量程的选用

参考电压VREF决定了AD9225的量程,即

满刻度量程= 2×VREF

VREF的值由SENSE引脚确定。如果SENSE与AVSS 相连,VREF是2.0 V,量程是0~4 V;如果SENSE与VREF直接相连, VREF是1.0 V,量程是0~2 V;如果SENSE与VREF通过电阻网络相连,则VREF可以是1.0~2.0 V之间的任意值,量程是0~2VREF;如果SENSE与AVDD 相连,表示禁用内部参考源,即VREF由外部参考电压源驱动。内部电路用到的参考电压是出现在CAPT和CAPB端。表1是参考电压和输入量程的总结。

表1 参考电压和输入量程

4 AD9225的存储方案设计

在高速数据采集电路的实现中,有两个关键的问题:一是模拟信号的高速转换;二是变换后数据的存储及提取。AD9225的采样速度可达25Msps,完全可以满足大多数数据采集系统的要求,故首要解决的关键问题是与存储器的配合问题。 在数据采集电路中, 有以下几种存储方案可供选择。

(1) 分时存储方案

分时存储方案的原理是将高速采集到的数据进行分时处理, 通过高速锁存器按时序地分配给N个存储器。虽然电路中增加了SRAM的片数,但使存储深度增加,用低价格的SRAM构成高速数据存储电路,获得较高的(单位速度×单位存储深度)/价格比。但由于电路单数据口的特点,不利于数据的实时处理,并且为使数据被锁存后留有足够的时间让存储器完成数据的存储,需要产生特殊的写信号线 。

(2)双端口存储方案

双端口存储器的特点是,在同一个芯片里,同一个存储单元具有相同的两套寻址机构和输入输出机构,可以通过两个端口对芯片中的任何一个地址作非同步的读和写操作,读写时间最快达到十几ns。当两个端口同时(5 ns以内 )对芯片中同一个存储单元寻址时, 芯片中有一个协调电路将参与协调。双端口存储器方案适用于小存储深度、数据实时处理的场合。由于双端口存储器本身具备了两套寻址系统,在电路的设计时,可以免去在数据存储和读取时对地址时钟信号的切换问题的考虑,使数据变得简单和快捷。

(3)先进先出存储方案

先进先出存储器的同一个存储单元配备有两个口:一个是输入口,只负责数据的写入;另一个是输出口,只负责数据的输出。先进先出(FIFO)存储器方案适用于小存储深度,数据需实时处理的场合。

对用户而言,存储器的存储速度和存储容量是

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top