能量收集天线助力无线传感器
其中:c=光速;f=工作频率(2.45GHz);εr=PCB基板的相对介电常数;εreff=PCB基板的有效相对介电常数。
为了达到良好的隔离效果,天线的相邻振子应相隔至少目标频率对应波长的二分之一(λ/2)。我们分别在天线振子间距为5.8cm(0.4737λ)、6.1cm(0.4982λ)和6.5cm(0.5310λ)时做了隔离性能测试,最后发现间距为6.1cm时可以在优化后提供最佳的性能。
微带天线不仅经常被用作单振子元件,而且也被用作阵列——尤其是在需要创建单振子天线无法实现的图案时。微带阵列的馈电网络可以用梯形传输线将100Ω天线贴片振子匹配到50Ω输入端口或四分之一波长阻抗转换器来实现。
当前设计采用了锥形线和天线阵列,其中的天线阵列由位于最厚传输线中间的探针以SMA兼容的50Ω阻抗馈电。对于Z0 = 50 Ω的特征阻抗,分到两条馈电线的阻抗是100Ω。
整流电路的设计基于的是对该电路的传输线计算。用于能量收集系统的基本整流器设计由一个二极管和一个电容组成。选择这种简单设计的原因是尽量减小二极管损耗。为了实现快速开关速度和低压降的目的,本文选择了Keysight公司的型号为HSMS-286B二极管。
采样仿真
这里采用了一种参数化的研究方法,用以确保天线工作在要求的谐振频率(2.45GHz)。利用这种设计方法,可以调整贴片天线的长度和宽度,以及传输线的凹槽和长度。这些调整对反射损耗、增益和阻抗带宽的影响是很显着的。初始设计是没有额外凹槽的,天线工作在2.4973GHz,反射损耗是-12.178dB。小数带宽计算值为2.96%,天线增益为13.35dB。
额外凹槽被引入天线阵列的每个单振子用于提高性能。这样,额外凹槽可以将天线增益提高13.51dB。参数化分析是用固定设计参数做的,长度和宽度Lf、Lb、Lp、Wp和Ls1参数除外。
以下值被应用于天线设计:Lp = 45mm, Lf = 25.5mm, Wp = 49mm。然后对设计进行仿真,发现2.408GHz点的反射损耗提高到了-46.486dB。计算得到的阻抗带宽是3.65%,增益是13.54dB,方向性是14.04dB。
然后利用参数化研究得出的值对天线性能进行仿真,仿真发现具有额外凹槽并且Wp = 47 mm、Lp = 43 mm、Lf = 25.5 mm、Ls1 = 16 mm时的天线设计具有很高的增益。这种天线工作在2.446GHz,具有-22.938dB的反射损耗和99.4MHz(3.87%)的阻抗带宽。同时它能实现14.08dB的高增益和14.18dB的方向性。
当只有Lp改变时(变到41mm),增益将下降到13.79dB。可以观察到一些频率漂移:漂移到了2.486MHz,反射损耗变成了-15.931dB。这个结果表明,贴片天线长度影响频率。因此,为了确保在2.45GHz处的ISM频段正常工作,Lp要设为43mm。当线路阻抗S1为61.18Ω时,2.446GHz的天线设计的阻抗匹配是59.499326Ω至8.460473Ω。
在进行集成和再次测量之前,需要分开来测量天线和整流电流。图5和图6显示了这种集成之前和之后的整流电路输出电压测量值。测量的目的是确定天线阵列的反射损耗、辐射图案、增益和接收功率。
图5:这是制造过的能量收集天线的设计。
图6:单级整流器电路和天线一起用来将射频能量转换为直流电压。
天线阵列设计与2.45GHz点的单频段功能一起工作,非常适合ISM频段应用。图7显示了仿真和测量结果,其中x轴是频率(GHz),y轴是反射损耗幅度(dB)。仿真结果表明,最佳工作频率为2.446GHz,此时的反射损耗是-22.938dB。测量结果表明,天线谐振的最佳点是2.4502GHz,此时的反射损耗是-18.4dB。测量结果似乎显示95%的精度,几乎与仿真结果有相同的值。通过引入凹槽以及企业馈电网络方法,可以实现最优的反射损耗。
图7:这些仿真和测量展示了在反射损耗性能方面最好的天线频率。
天线带宽等于同样在3dB下降点的上限频率减去下限频率,见仿真和测量结果所示。图8和图9分别显示了94.6MHz的仿真天线带宽和95.8MHz的测量天线带宽。测量结果稍好于仿真结果,但两个值仍然非常接近。通过使用为贴片天线阵列中的每个辐射振子引入的双槽结构以及馈电网络安排中的馈电位置,这种带宽还可以进一步增加。
图8:根据电脑仿真结果,天线带宽是94.6MHz。
图9:根据测量结果,天线带宽稍微变宽了,为95.8MHz。
这种多层2×2天线阵列在每个辐射振子都有额外凹槽的条件下的目标增益都大于10dB,因此可以在收集环境射频能量时获得很好的结果。理论上讲,天
- 第四代移动通信系统中的多天线技术(08-05)
- 教您如何用天线扩展无线网络覆盖范围(04-20)
- TD-LTE/GSM共站部署技术(06-17)
- 基站天线与移动通信中的干扰抑制(12-17)
- FA/D双频独立电调天线 加速TD-LTE网络部署浪潮(08-12)
- 中华人民共和国通信行业标准微波站防雷与接地设计规范(10-23)