补码格式数据在民机试飞数据处理中的应用

图中的实心点就是点对校准曲线的特征点。标准化的试飞数据处理软件对于特征点内的原码值采用线性内插值解算对应的物理量,对于特征点外的原码值采用线性外插值解算对应的物理量。从实际工程应用中可知,校线的特征点连线并不是一条直线,而是一条折线段,所以,选取校线的特征点越多,数据结果的精度越高。
3 补码格式数据处理方法的研究
当特殊类型的测试参数的原码被记录成补码格式,并按照图3给出相应的校线。

图3中的虚心点表示要求解的参数对应的码值,通过线性内插值,很容易求出参数在这一点的对应的物理量。但是,如果不考虑补码情况下,原码值将被认为是超过32 767的正整数值,如图4所示。

按照线性外插值求解,结果显然是错误(其中,除了原点,图3和图4实心点的x坐标,从左到右的依次为x1,x2,x3,x4,对应)y坐标为y1,y2,y3,y4。虚心点坐标(x,y)。以后图例中坐标点均按此规定描述)。
通过线性方程进行分析,修改点对校准曲线,可以解决这个问题。修改点对校准曲线的方法是,将码值为非负整数的特征点保持不便,把码值为负整数的特征点换算成补码,然后将补码按照无符号值和原码值对应,构成新的点对校准曲线,按照补码的单调性和直线的平移性可知,这种方式的变换不改变计算的结果。

转换后的点对校准曲线如图5所示,按照这种方式就能求解出正确的物理量。但是,还有一种特殊情况没有考虑到,如果仅仅按照转化点对校准曲线的方法来处理补码数据,对于大于x2又小于32 767的值,将会出现错误,如图6所示。

从图6中可以看出,对于大于x2小于x3的码值,经过上述方法进行处理,将得到错误的物理量。通过增加点对校准曲线的特征点可以解决这种特殊情况。在特征点x2和x3之间加入两个新的特征点x2’=32 767和x3’=32 768,并按照线性外插分别求出x2’对应的物理量y2’和x3’对应的物理量y3’,如图7所示。
由图7可知,能正确解算图6出现的特殊情况。
4 结语
本文通过讨论校准曲线和试飞数据处理方法的关系,以及补码在数值上单调性,采用解析几何中线性方程平移的特性。提出了仅对校准曲线做一定的修改,就能正确处理补码格式的试飞数据。这种解决方法不用修改标准化的试飞数据处理软件,就能得到正确的试飞数据处理结果,有效地保障了支线飞机定型试飞任务的顺利进行。同时,也给生成校准曲线的试飞工程师提供了一种解决类似问题的思路。
- 传感器技术中的阻抗测量方法(03-23)
- 电桥测量基础(06-10)
- 适用于微型仪器的精密电容传感器接口(09-06)
- 基于PIR的移动检测系统的实现(11-03)
- 基于霍尔传感器的直流电机转速测量系统设计(11-14)
- NPXI智能传感器的TPMS系统设计(11-29)
