微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 三相高速数据收集方案支持智能化更高的电网管理

三相高速数据收集方案支持智能化更高的电网管理

时间:04-30 来源:电子产品世界 点击:

1 三相电功率测量基础知识

三相电力系统承载频率相同的三相交流电(AC),各相之间彼此相位差120°。图1所示为三相电压波形,图2所示为配置为4线Y型或星型连接的三个单相。3线Y型连接与没有零线的4线连接完全相同。零线(图2中黑色线)连接至Y型配置系统的中心点,供不平衡负载使用。如果负载恰好平衡,意味着各相电流相同,相电流彼此抵消,零线中没有电流。所以,3线连接常用于平衡负载。显而易见,线越少、消耗的铜缆就越少,系统成本越低、也更经济。

功率是负载上电压和电流的乘积。功率计包括电流表和电压表,一起测量电力线上的功率。对于三相三线系统,测量总功耗至少需要两个功率计,如图3所示。总功率为两个功率计的瓦特数之和。

在这里,我们有必要对图3中的电路进行简要分析。以三相负载的中心点作为0V参考点。则:



  现在,我们需要稍做修改。然而,仅使用两个功率计,是不能计算每相功率的;如图4所示,测量每相的功率基本要求三个功率计,每相一个,此时将零线用作地参考点。对于负载不平衡的4线三相系统,零线中有电流。尽管可对全部三相电流进行求和,从而计算得到通过零线的电流,但额外增加一个电流表来测量零线的电流更简单。此外,在发生电流故障时,这种方法提供的数据更有效。

如图4所示,有3个电压表和4个电流表。每个表需要一个电流变压器或电压变压器(衰减电压或电流)和一个ADC模拟输入,将模拟电压/电流信息转换为数字数据。中央控制单元负责处理这些数据并进行相应的响应。与直流电源不同,无论负载如何,每相交流电压和电流随时间发生变化。因此,ADC必须同时采样输入,以正确计算瞬态功率。一种方案是采用7个独立的ADC,每个电压表或电流表一个;中央控制单元需要连接全部并行的ADC。但这种方法存在问题。这种方法中,要求控制器和ADC之间有许多控制线,造成电路板布局较大、结构复杂,难以优化性能。为提供大量I/O,控制器封装的尺寸可能也较大。有一种更好的解决方案:采用多通道ADC,这正是Petaluma子系统的解决方案。

2 确保高精度三相监测

高精度三相功率监测必须同时采样全部模拟输入,以高精度计算瞬态功耗。Petaluma (MAXREFDES30#)子系统参考设计(图5)是高精度模拟输入前端(AFE)。Petaluma采用16位精度和8通道操作,监测智能电网,同时收集三相模拟数据。每通道250ksps的高速采样率支持±10V输入信号,确保高精度捕获故障事件,供电公司可在单个周期内立即采取措施。

Petaluma子系统也优化用于要求多路高速、高精度、同时采样模拟输入的应用,例如多相电机控制和工业振动检测。

适用于配电自动化的低功耗、完备信号链AFE,Petaluma子系统方框图如图6所示,接下来我们做进一步分析讨论。

Petaluma采用两片四路、超高精度超低噪声运算放大器(MAX44252),对±10V输入信号进行衰减和缓冲,以匹配ADC (MAX11046)输入范围。运算放大器采用反相配置,所以信号的ADC输入的信号极性是反相的。ADC转换结果与电压的关系式为:10-CODE/65536 × 20。

MAX11046为8通道、250ksps、16位、单电源供电、双极性、同时采样ADC。虽然ADC内部提供了4.096V电压基准,如果Petaluma使用外部高精度电压基准MAX6126,可提供更高精度。MAX6126的初始精度为0.02%,最大温度系数(tempco)为3ppm/ºC。

MAX1659和MAX8881稳压器分别提供后端稳压,产生5V和10V电源。MAX765 DC-DC反相器和LM337负压LDO产生-10V电源。

Petaluma连接至FMC兼容现场可编程门阵列(FPGA)/微控制器开发板。子系统要求FMC连接器提供3.3V和12V。

3 针对ZedBoard™平台的固件

针对ZedBoard平台发布的Petaluma固件支持Xilinx® Zynq®片上系统(SoC)内部的ARM® Cortex®-A9处理器。固件利用Xilinx SDK工具用C语言编写,基于Eclipse™开源标准。固件连接硬件、收集采样并将其保存至存储器。固件接收命令,配置ADC,以支持250ksps最大采样率,通过虚拟COM端口将采样数据下载至标准终端程序。

4 性能测量

图7和图8所示为ADC采样的FFT图,以250ksps高采样率获得数据。这些动态测试结果表明,Petaluma子系统在信噪比和总谐波失真(THD)方面具有非常好的性能。

往往利用直流信号的直方图确定ADC系统的噪声。由于系统中存在噪声,ADC产生的结果将在主值附近。转换结果的分散性表示ADC的噪声信息。图9的直方图表明,计算得到的标准方差为0.711,非常好。此外,97.7%的转换结果在前三个中心主值之内。

注意,如要复现测试数据,要求精度高于被

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top