短波接收机便携式自动测试平台设计与实现
益。
(2)音频信纳德算法。音频信纳德测量时,采用51 200 Hz采样率,采集1 024点进行FFT变换,采样时间为20 ms,可对1 kHz的五次谐波每周期采集10点。A/D采集后的信号直接进行FFT变换,FFT变换采用STM32自带的1 024点FFT变换函数,FFT变换后取得变换的功率值,然后分析出1 kHz主波及二次谐波、三次谐波、四次谐波、五次谐波,用1 kHz主波的值与其谐波的和进行比较,计算出信纳德值。
(3)音频频率测量算法。音频频率测量采用STM32的计脉冲功能,通过计算外部信号的两个脉冲上升沿间,内部时钟记录的脉冲数,可计算出信号的周期,从而计算出信号的频率。
音频测试采用A/D+精细化FFT算法软件,进行音频信号电平测量和失真度测量。在频谱分析时由于谐波频率预先不知,很难实现信号的整数次谐波采样,这样就不可避免地存在由于时域的截断而产生的谱泄露,而且FFT只能对有限长度的采样数据进行处理,使得频谱存在栅栏现象,只能观测有限个频率点谱线。针对上述问题,本方案采用一种频谱细化的方法,不增加采样数据长度,在FFT谐波分析方法的基础上进行简单的调制,可得到高分辨率的细化频谱。
3 测试流程
接收机性能指标主要包括音频频率、音频响应、总失真系数、带外互调。以音频响应为例介绍其测试流程。根据国标《GB/T6934-1995短波单边带接收机电性能测量方法》自动测试流程如图6所示。
(1)初始化。终端通过信号线设置接收机工作频率、工作方式静噪模式等相关参数。(2)测试平台将标准单音信号输入接收机射频口。(3)接收机解调后,将音频信号输出到测试模块,进行音频采集分析并调节电台音量。(4)终端软件改变射频输入信号的频率,将接收机音频信号采集分析的最大电平值和最小电平值相除,其比值即为音频相应。
音频响应算法实现的伪代码如图7所示,软件可用循环程序省去人工测试时繁琐、复杂的操作,从而实现自动测试。
传统的方法测试接收机音频响应时,首先在测试频率计、功率计或综测仪上设置工作方式、输出功率、频率、静噪模式等,然后需要手动在仪器上改变频率,范围是300~3 000 Hz,以10 Hz步进,从综测仪中读出每个频率点所输出的音频电平,找出最大和最小频率,两者相比即为音频相应。操作复杂、繁琐。
本自动测试平台在测试时将人工操作全部封装在软件中自动执行,尤其是软件以10 Hz步进自动改变频率,采集到的所有电平自动进行比较找出最大和最小电平,操作人员只需在上位机测试软件界面选择相应的测试指标,测试平台即可完成自动测试,测试结束后返回测试结果,操作简易,直观。
4 测试结果分析
将本自动测试平台测试结果与综合测试仪测量结果进行数据对比,如表2所示。
由表2可知,本文实现的自动测试平台满足对短波接收机仪器测试的要求,可实现对接收机音频频率、失真度、带外互调和音频相应等主要指标的测试,与综合测试仪测试结果对比,满足测试要求。
本文实现的测试平台上位机控制软件界面如图8所示。
5 结束语
此测试平台相比与传统测量方法具有易操作性、便携性的特点,可将传统仪器测试时及其复杂的操作简单化,通过上位机软件控制,可根据不同种类的电台接收机、不同的测试指标进行软件的动态调整,并具有开放性,可随着测试需要进行软硬件升级。下一步将继续优化测试步骤,优化测试界面,使操作更简易,测试结果更准确。
- 设备供电的质量你了解多少(01-05)
- DT系列电子经纬仪主要指标的校准方法(01-06)
- 正确选择红外测温仪才是关键(01-05)
- 关注深存储示波器刷新率指标,准确捕捉偶发随机事件(01-04)
- 数字中频和模拟中频频谱仪的指标分析(12-27)
- 数字多用表技术指标的组成部分(12-27)