微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 短波接收机便携式自动测试平台设计与实现

短波接收机便携式自动测试平台设计与实现

时间:10-18 来源:互联网 点击:

当前,对短波电台的检测主要依靠传统测试方法,需要的测量仪器种类繁多、操作复杂、对测试人员要求高,且测试仪器笨重,不便于携带,无法满足野外及复杂情况的要求。本文提出了一种综合各种通用仪表相关功能,且具备自动测试能力的便携式小型电子设备,此设备将频谱仪、频率计、功率计、射频源和音频分析仪等现代通信电台测试中最常用设备的测试功能进行集成后,用上位机软件Matlab和C++混合编程实现自动测试,即自动测试系统平台。

1 总体设计

此自动测试平台由测试终端、测试模块和配套电缆等组成,如图1所示。

a.jpg

此测试平台分为两个功能单元,射频产生单元和音频采集分析单元。射频产生单元可产生不同调制方式的信号。音频采集分析单元可接收来自电台输出的音频信号并音频采集分析单元可接收来自电台输出的音频信号,并完成分析。测试模块内部总体设计原理如图2所示。

b.jpg

2 关键技术研究

2.1 射频产生单元

根据国标要求,在测试接收机相关指标时,需加入射频信号到接收机射频口。本模块可产生AM/DSB/SSB(USB/LSB)模拟调制模式和BPSK/QPSK/8PSK/2PSK数字键控模式信号,常用的产生调制信号的方法是用Matlab产生FTR滤波器所需要的系数,FPGA中的FIR编译核调用Matllah产生的FIR系数来产生调制信号所需的FIR滤波器,最后将程序下载至

FPGA中,此方法更改参数复杂,操作繁琐,不适应于自动测试中。本文采用了一种基于信号正交变换理论和数字信号处理算法,以软件编写和硬件电路结合的方法,进行数字信号内插滤波、正交调制变频,产生不同带宽、不同制式的射频信号。

一个频谱的单频率信号的离散化时域表达式如式(1)所示

S(nTs)=a(nTs)cos[wcnTs+φ(nTs)] (1)

对其信号进行正交分解,从而便于对信号进行调制,正交分解表达式如式(2)所示

S(nTs)=I(n)cos(wcnTs)+Q(n)sin(wcnTs) (2)

若要产生任何一种调制信号,只需求出Q(n)、I(n),与sin(wcnTs)、cos(wcnTs)相乘,调制信号S(nTs)即为两路信号相加后得到。正交调制框图如图3所示。

c.jpg

SSB为常用工作方式,这里主要介绍单边带调制过程。将SSB时域信号离散化后表达式如式(3)所示

d.jpg
e.jpg

式(6)和式(7)中,wm为基带调制信号的角频率,M=N/2,N为滤波器阶数。

调制信号通过上位机C++和Matlab软件混合编程进行算法实现后,提供API接口函数int Rf Enable(int Number,int Type,int Enable)供上位机开发软件调用,说明:射频输出/停止,Number为USB标识;Type为0:单音,Type为1;SSB,Type为2;AM,Enable为1使能。接口函数int SetRF(int Number,double OutPower,double OutFreq),说明用于发送射频频率和射频功率,Number为USB标识,OutFreq为输入射频频率,Out Power为输入射频功率。

在上位机软件界面即可灵活地选择调制方式,控制硬件电路的FPGA,FPGA将信号传输到AD9910进行上边频处理,变频后通过射频口输出已调信号,产生不同带宽、不同制式、不同频率的射频调制信号。射频信号产生单元的原理框图如图4所示。

f.jpg

相比传统测试时需要在仪器上设置工作方式、频率、功率等操作,本自动测试平台将此类设置操作全部封装在软件中自动执行,测试人员只选择需要测试的性能指标,而无需关注测试时的具体设置参数,即可一键自动测试。

2.2 音频采集分析单元

音频信号分析单元完成电平测量、信纳德测量、频率测量和失真度测量的4个主要功能。音频电平测量、信纳德测量和失真度采用相同的信号处理电路,其测量原理如图5所示,由MCU对音频信号进行A/D采样,并通过算法对采样数据进行分析,得出音频频率值、电平值、失真度值与信纳德值。

g.jpg

音频信号分析是采用STM32的A/D采集来实现模数转换,AD数据位是12位,则精度为3.3 V/212=0.8 mV,STM32的采样电平范围是0~3.3 V,需要对音频信号进行处理,通过衰减电路,将输入音频信号衰减到原来的0.275,然后用PGA芯片MCP6S21对信号进行如表1的处理,使之峰峰值在1.6~3.2 V以内。

h.jpg

再经过加法器为音频信号增加直流偏置1.65 V,则得到既可满足STM32的采样电平范围又能使采样信号接近3.3 V的音频信号。输入音频信号与经调理后的采样信号关系如式(8)所示。

So=1.65+0.275×GSi (8)

其中,So为采样信号;Si为音频信号Vrms;G为可编程增益。

(1)音频电平测量算法。采样率为40 960 Hz,采样点数为1 024点,采样时间为25 ms,在输入信号范围内,对200 Hz的信号可在每个周期采200点,采5个周期;10 kHz的信号可在每个周期采40点,采25个周期。音频电平的计算公式如式(9)所示

i.jpg

式中,Amax为采样点最大值;Amin为采样点最小值;G为可编程增

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top