微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 触摸屏电磁干扰源解析

触摸屏电磁干扰源解析

时间:10-18 来源:互联网 点击:

级线圈之间没有 DC连接。然而,这仍然会通过开关电源隔离变压器产生电容耦合。充电器干扰源在屏幕上触摸的手指上产生返回路径。

注意,在这种情况下,充电器干扰是指装置供电电压与大地之间的干扰,这种干扰可能被当成 DC 电源和 DC 地之间的“共模”干扰。在充电器输出的 DC 电源和 DC 地之间所产生的电源开关噪声,如果没有被完全过滤掉,则可能会影响触摸屏的正常运行。这种电源纹波抑制(PSRR)问题是另外一种干扰情况,本文不做讨论。

PSRR

充电器耦合阻抗

充电器开关干扰通过变压器初级-次级绕组漏电容(大约 20pF)耦合产生。这种弱电容耦合现象可以被充电器和装置本身所产生的寄生并联电容抵消。拿起装置时,并联电容将增加,这通常足以消除充电器开关干扰,避免干扰影响触摸屏运行。充电器产生干扰的最坏一种情况是,便携式装置放在桌面上并连接到充电器,同时操作人员手指与触摸屏接触。

充电器开关干扰构成

典型的蜂窝手机充电器采用反激式(flyback)电路拓扑。这种充电器所产生的干扰波形比较复杂,而且不同充电器产生的干扰波形差异很大,他取决于电路和输出电压控制策略。干扰振幅的变化也很大,这取决于制造商在开关变压器屏蔽设计上投入的努力和成本。典型参数包括:

波形:包括复杂的脉宽调制方波和 LC 振铃信号波形

频率:额定负载下 40–150kHz,负载很高时,脉冲频率或跳转周期操作下降到 2kHz以下

电压:最高为峰值电压的一半= Vrms / sqrt(2)

图 6. 充电器波形示例

充电器电源干扰构成

在充电器前端,AC 电源电压整流产生充电器高电压,这样,充电器开关电压器件也产生幅值为电压一半的正弦波。与开关干扰相似,此电源电压也是通过开关隔离变压器产生耦合。在 50Hz 或 60Hz 时,该组成部分的频率远低于开关频率,其产生的有效耦合阻抗更高。电压干扰的严重程度取决于对地并联阻抗特性,同时还取决于触摸屏控制器对低频的灵敏度。

电源干扰的特殊情况:3 孔插头不带接地功能

额定功率较高的电源适配器,例如笔记本电脑 AC 适配器,可能会配置 3 孔 AC 电源插头。为了抑制输出端 EMI,充电器可能把主电源地引脚内部连接到输出的 DC 地。此类充电器通常在火线和零线以及地线间连接 Y 类电容器,从而抑制来自电源线上的 EMI。假设地线连接存在,该类适配器不会对供电 PC 和 USB 连接的便携式触摸屏装置造成干扰。图 5 中的虚线框说明了此种配置。

对于 PC 和连接 USB 的便携式触摸屏装置来说,PC 充电器的 3 孔电源插头插入没有地线连接的电源插座,这是充电器干扰的一种特殊情况。Y 类电容器耦合 AC 电源到 DC 输出地。相对而言,较大的 Y 类电容器值能够更有效的耦合电源电压,这使得较大电源频率电压通过触摸屏上手指产生的阻抗耦合相对较低。

小结

当今广泛用于便携式装置的投射式电容触摸屏,很容易受到电磁干扰。来自内部或外部的干扰电压会通过电容耦合到触摸屏装置,这些干扰电压引起触摸屏内的电荷运动,可能会对手指触摸屏幕时的电荷运动测量造成混淆。因此,触摸屏系统的有效设计和优化取决于对干扰耦合路径的认识,并对其尽可能进行消减或补偿。

干扰耦合路径涉及到寄生效应,例如变压器绕组电容和手指-装置间电容。对这些影响进行适当的建模,可以充分理解和认识到干扰的来源和大小。

对于许多便携式装置来说,电池充电器构成触摸屏主要的干扰来源。当操作人员用手指接触触摸屏时,所产生的电容使得充电器干扰耦合电路得以关闭。充电器内部屏蔽设计的质量和是否有适当的充电器接地设计,是影响充电器干扰耦合的关键因素。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top