便携式生命体征动态监测仪设计
生命体征监测仪是医院不可缺少的重要设备,它实时、连续、长时间地监测病人的重要医学生理参数,并将获得的数据传送给医护人员,以供医护人员进行分析,使得医护人员能够对病人当前的状态做出正确判断,从而做出正确的处理。便携式生命体征监测仪采用随身式设计,小型轻便,能实时地进行人体多生理参数的监护,最适合于野外及家中,并可用于普通医院作为个人生命参数监护设备。
本文将该设计划分为若干个模块,分块实现各生理参数的测量及处理。选用不同的传感器对各生理参数进行采集,以单片机为控制核心,编程实现对输入信号的处理和输出信号的控制。
1 系统整体设计
1.1 硬件系统设计
系统总体结构框图如图1所示。本设计以AVR单片机ATmega16为控制核心,通过温度传感器、硅光电池、压力传感器、加速度传感器获得人体温度、脉搏、血压及跑步者的步数情况,再由单片机实时计算测量值并将结果送至液晶显示器显示,当测量值超过设定的阈值时,触发声音报警。系统设有键盘、人工复位电路。
1.2 软件系统设计
软件采用模块化设计方法,由主程序及参数测量、液晶显示、和键盘处理等若干子程序组成。系统主程序流程图如图2所示,系统上电后首先初始化,然后进行各参数的测定、判断超量报警及显示等操作。
2 各模块设计
2.1 温度检测模块
采用数字温度传感器DS18B20,其优点是提供12位温度读数,从单片机到DS18B20仅需一条数据线。DS18B20的测量范围从-55℃到+125℃,增量值为0.5℃,可在1 s内把温度变换成数字。
完成温度转换经过3个步骤:1)每一次读写之前都要对DS18B20进行初始化操作;2)初始化成功后发跳过ROM指令;3)最后发送温度转换RAM指令。这样等转换完成后将所测温度值送入缓冲区以供LCD显示,若温度值超过预设阈值,则触发报警提示。
2.2 脉搏检测模块
利用指套式光电传感器,换能元件采用硅光电池,由于心脏的跳动,引起手指尖的微血管的体积发生相应的变化,当光通过手指尖射到硅光电池上时,产生光电效应,两极之间产生电压由于指尖的微血管内的血液随着心脏的跳动发生相应于脉搏的容积变化,因而使光透过指尖射到硅光电池时也发生相应的强度变化,这样就把人体的脉搏转换为相应的电信号。结构如图3所示。
光电脉搏检测电路共分为5个部分,由光发射电路、光电转换电路、一级放大电路、二阶低通放大电路和波形整形电路等五部分组成,整体电路如图4所示。
光发射电路采用了常见恒流源电路,通过稳压管保证流过LED的电流为恒定值。光电转换电路采用硅光电池,将光信号转换为电压信号。一级放大电路对微弱信号进行放大,放大约20倍,为了不影响有用信号又能滤掉50 Hz干扰,将频率截止到31Hz。按人体脉搏最高跳动次数240次/min计算,根据归一化法设计低通放大器,理想放大倍数为-22.7倍。高频转折频率为14 Hz,低频特性满足条件,不影响有用信号。波形整形电路是一个电压比较器,该比较器的阀值电压可调节在脉搏波的幅值范围内。最终得到的信号为方波形式,送入单片机定时/计数器中计数,从而计算出脉搏数。
2.3 血压检测模块
本设计中的血压测量采用示波法。由于心搏的血液动力学作用,在气袖压力上将重叠于心搏同步的压力波动,即脉搏波。示波法血压测量就是根据脉搏波振幅与气袖压力之间的关系来估计血压的。与脉搏波最大值对应的是平均压,收缩压和舒张压分别以对应脉搏波最大振幅的比例来确定。
该模块要完成信号的采集、处理和显示等功能,最主要的部分是传感器电路。
1)传感器电路
传感器电路主要包括传感器、放大电路部分和带通滤波电路,其电路原理图如图5所示。袖套通过气管连接到压力传感器MPX2050上,MPX2050将压力线性地转化为模拟电压信号。模拟信号通过仪用放大器AD620进行第一级放大,放大后的模拟电压信号通过电容将直流参量和交流分离。直流参量连接到ATmega16的模数转换通道ADC3口上,其测量的是袖套中的平均压力;交流参量通过OPA2277组成的带通滤波电路。交流参量得到足够大的放大增益并且有效减小噪声干扰。放大后的交流信号再接入一个交流耦合电路。经过处理的信号连接到ATmega16的模数转换通道ADC2口上,用于测量脉搏波的振幅。
2)血压检测软件设计
血压测量控制按键按下后,启动血压测量过程,袖袋开始充气。在袖袋充气过程中,如果用户感到不舒服或者有强烈的疼痛感,则可以再次按下血压测控按键停止气泵,袖袋快速放气,从而结束测量。这主要是为了确保用户在使用设备时的安全。如果袖袋充气过程正常,则袖袋内的压力将持续增加,直至160 mmHg。达到
ATmega16 生命体征 传感器 液晶显示 报警提示 相关文章:
- 基于ATmega16的数字光功率计设计(03-13)
- 叶绿素含量测试仪实施方案及硬件选择(07-15)
- 基于ATmega16的便携式机车信号发生器设计(05-23)
- 基于Atmel微控制器的功率测试(11-04)
- 传感器技术中的阻抗测量方法(03-23)
- 电桥测量基础(06-10)