微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 分布式光纤传感温度测试系统性能标定方法

分布式光纤传感温度测试系统性能标定方法

时间:12-28 来源:互联网 点击:
分布式光纤温度传感系统是一种用于实时测量空间温度场分布的传感系统,实质上是分布光纤拉曼(Raman)光子传感器(DOFRPS)系统,它是近年来发展起来的一种用于实时测量空间温度场的光纤传感系统。本文拟在简要阐述分布式光纤监测技术和分布式光纤温度监测技术及其校准原理的基础上,对分布式光纤传感温度测试系统性能标定方法进行介绍,为该系统在工程结构监测中的应用提供借鉴。

二、原理介绍

1.分布式光纤监测技术

(1)光纤光时域反射(OTDR)原理

当激光脉冲在光纤中传输时,由于光纤中存在折射率的微观不均匀性,会产生瑞利散射,在时域里,激光脉冲在光纤中所走过的路程为2L,可表示为

2L=V×t (1)

式中:V——光在光纤中传播的速度,可表示为V=cn,其中c为真空中的光速,n为光纤的折射率;t——入射光经背向散射返回到光纤入射端所需的时间。

在t时刻测量到的是离光纤入射端距离为L处局域的背向瑞利散射光。用光时域反射技术,可以确定光纤处的损耗,光纤故障点、断点的位置,对测量点进行定位,因此也可称为光纤激光雷达。

在空间域里,光纤的瑞利背向散射光子通量:

式中:Φe——在光纤入射端的激光脉冲的光子通量;KR——与光纤瑞利散射截面相关的系数;V0——入射激光的频率;S——光纤的背向散射因子;a0——入射光子频率处光纤的损耗;L——局域处离入射端的长度,

(2)三类散射

在光纤中传播的光波,其大部分是前向传播的,但由于光纤的非结晶材料在微观空间存在不均匀结构,有一小部分光会发生散射。光纤中的散射过程主要有3种:瑞利散射、拉曼散射和布里渊散射,它们的散射机理各不相同。

当光入射到光纤中,光与光纤介质相互作用引起光的散射。当光子与光纤中的SiO2分子相互作用时,两者没有能量交换的弹性碰撞部分称为瑞利(Rayleigh)散射;两者有能量交换的部分,即入射光子与介质产生非弹性碰撞,吸收或发射声子时,产生布里渊(Brillouin)散射、拉曼(Raman)散射。

2.分布式光纤温度监测技术

(1)拉曼散射原理

与分布式光纤传感温度测试系统主要相关的是拉曼散射。光通过介质时由于入射光与分子运动相互作用而频率发生变化的散射即为拉曼散射(见图1)。

图1拉曼散射示意图

拉曼散射遵循如下规律:散射光中在每条原始入射谱线(频率为v0)两侧对称地伴有频率为v0±vi(i=1,2,3,……)的谱线,长波一侧的谱线称红伴线或斯托克斯线,短波一侧的谱线称紫伴线或反斯托克斯线;频率差vi与入射光频率v0无关,由散射物质的性质决定,每种散射物质都有自己特定的频率差,其中有些与介质的红外吸收频率相一致。

因为拉曼散射光的强度与温度成正比,利用拉曼效应可进行温度测量。

(2)测量原理(见图2)

图2测量原理图

利用拉曼效应进行温度测量。激光脉冲入射到光纤里,在发送端得到背向散射光,并进行分析。拉曼散射光的强度与温度成正比。测量散射光强度得到沿光纤分布的温度。

利用OTDR技术计算温度点的位置,是通过测量背向散射光返回起始端的时间来得到的,类似于雷达回波技术。

系统采用低功率激光器,将采集信号与调制信号相关(格雷码)形成低功率系统。

三、系统校准

测算由系统与光缆构成的温度测量系统的衰减率,用测得的衰减率对实测温度进行校正,减少或消除由于散射光衰减引起的温度测量误差。

系统采用独有的专利保护的单接收器设计,从根本上消除了由传感器光电转换效率导致温度测量的不准确性,仪器本身出厂后无需再次校准。而由于各个使用者采用的光缆不尽相同,所以使用系统前需要对光缆进行校准。

校准分为长度校准和温度校准,系统充分考虑到实际工程安装中以及后续维护中可能在一条线路上使用不同供应商的光缆,所以每个测量通道最多可划分为16个校准分区,独立校准。

测量模式分为2种:单端测量和双端测量模式。单端测量采用的是温度校准。温度校准的参数为衰减率、增益和偏置。在每段需要校准的传感光缆的前部预留(20~50)m用于校准使用。双端测量模式无需校准anti-stokes和stokes光的衰减率差,由系统自动完成动态的计算,在进行双端测量模式(两个通道连接同一条光纤)时,系统自动校准由一定的环境和机械原因(应力、光纤弯曲、熔接点、氢腐蚀)导致的Stokes/Anti-Stokes损耗比的变化。这样的设计可以保证在铺设的光纤的使用寿命内精确地实现温度测量。

四、可重复性和准确度标定

分布式光纤传感温度测试系统在使用前需确定仪器测量数据的可重复性以及仪器的准确度,从

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top