一般接地网接地电阻的测量
则Rg=ερU/Q=ερ/C(Ω)
其中jn---电流密度(A/m2)
En---电场强度,V/m
ρ---土壤电阻率,Ω·m
Dn---电位移,Dn=εEn
Q---电量,Q=∮sDnds
C---接地极对无穷远处的电容,F
可以认为接地电阻Rg虽具有直流电阻相同的量纲,但实际是土壤电阻率ρ与电容C的比率乘以介电常数ε,因此确切地说应该为接地阻抗。同时由于接地电阻Rg含有电容C这一分量,因此在测量时不能使用直流电源,也不宜以功率表法来测量Rg,功率表的指示值反映电阻分量,而且一般功率表的指示误差与功率因数cosφ有关。若cosφ=0.7~1.0其误差范围符合表计本身准确级标示的要求,但随着cosφ值的降低,误差就不能保证。这也是专门设计低功率因数功率表的理由。接地电阻的阻抗角φ一般都在0.5~0.7之间,其误差是难以估计的,由于这种方法之后反映电阻分量Rg=P/I2;测量值要比实际值偏小,易于得到错误的结论。由此可见接地电阻与一般导体电阻R=ρL/s的物理概念是不一样的,其值与土壤电阻率ρ和介电常数ε的乘积成正比,与电容C成反比,而与接地装置内部的引线长度无直接的关系。
1、接地电阻测试仪使用前的临场检验
在用接地电阻测试仪测量接地电阻时,要求电压探棒和接地极相距20m,电流探棒与电压探棒相距也是20m,并且三点位于同一直线上,如图(a)所示。
接地电阻测试应一般都有探棒2~3根和长度20m和40m的专用线。这种接地电阻测试仪适用于小型接地装置,如配电变压器的接地装置、独立建筑物的防雷接地、住宅小区变电站的接地等,并不适用于110kV以上输电线路杆塔的防雷接地,35kV及以上变电所的接地网和装有昂贵电子设备的高层建筑接地系统。但在实际测量中,经常会碰到以下两种情况:
一、距离接地极20m以外是建筑物,电流探棒无法打入距被测接地电极40m的地下;
二、接地极周围都是混凝土,探棒无法打入。
当出现上述情况时,如何测量接地电阻呢?为此做一个实验:
首先保持接地极和电流探棒相距40m,改变电压探棒与接地极的距离d,如图(b)所示,然后用接地电阻测试仪测量不同距离下的接地电阻值,得到如下表所示数据:
d(mm) | 5 | 10 | 15 | 18 | 20 | 22 |
测量值(Ω) | 1.8 | 1.9 | 2.0 | 2.1 | 2.1 | 2.1 |
可见由于注入接地极的电流保持不变,电压探棒距接地极越近,接地极与电压探棒之间的电压就越小,测量值也随之变小,当距被测接地极18~22m时,测量值相等,表示此值最接近被测接地极的电阻值。此实验说明,向单根接地极注入电流后,在距单根接地极20m附近,电位已近于零,因此要测出接地极的对地电位,必须把电压探棒打到距接地极20m左右的地方。又为了消除互电阻的影响,电流探棒距电压探棒的距离也保持在20m为宜。
如果距离接地极20m以外是建筑物,则可采用图(c)和(d)所示的方法。图(c)将电压探棒和电流探棒分置在被测接地极的两侧;图(d)则使三者呈现三角形布置,被测接地极与探棒之间皆相距20m。用同一台接地电阻测试仪测量同一接地极,用图(c)和(d)方法测量结果与图(a)的布置,在d=20m时一样,也是2.1Ω。
当接地极周围是混凝土路面时,可采用以下方法:将两块平整的钢板(250x250mm)放在混凝土路面上,在钢板和混凝土路面上之间浇上水,测试线夹在钢板上,其测量结果都与探棒打入地下测量的结果相同。
在工程中经常碰到这样的情况:当利用建筑物基础桩作为接地网时,在测出基础桩的接地电阻后,近地末端做测量点,直接利用柱头内的主钢筋作为防雷引下线通至屋顶,当工程结束后,如何检查防雷装置的接地电阻?此时,可用一根导线,一端连在屋顶女儿墙的防雷带上,另一端连接到位于地面的接地电阻测试仪的E端上,电压探棒距离接地网20m,电流探棒距接地网40m,且和电压探棒在一直线上,此时测得的电阻,减去从女儿墙上引下的导线电阻,加上接地电阻测试仪制造商提供的5m测试线的电阻,即为接地电阻实际值。
2、三极法测量接地电阻
通常将接地装置等值于一掩埋地表的半径为rc的半球体,如下图所示:
其面积等效于接地装置的有效流散面积,标以1,另将准备好的接地极两根,距离接地装置较远的标以3,较近的标以2,然后在1、3之间接入以交流电源注入接地电流I,并以一电压表测量1、2之间的电压U,即可求得电阻值:Rg=U12/I
为了防止土壤
接地网接地电 相关文章:
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)