天线近场测量技术探讨补脑
天线特性参数的测量有多种方法,目前,主要的方法包括三大类:天线的远场测量、天线的紧缩场测量、天线的近场测量。其中,因天线特性主要是定义在天线的远场区故远场测量更为直接准确,而紧缩场测量天线主要是拉近远场所需远场条件:d≥2D2/λ,其通常采用一个抛物面金属反射板,将馈源发送的球面波经反射面反射形成平面波,在一定远距离处形成一个良好的静区。将天线安置在静区内,测量天线的远场特性,其类似于远场测量,只是缩短测量距离,便于在理想远场环境(暗室)下进行测量。
比较而言,天线近场测量技术应用更为广泛,其对设备要求低,不需要造价昂贵的暗室环境,也不需要远场测量下,对射频系统的较高的要求。
传 统的远场测量由于受地面反射波的影响,难以达到这么高的测量精度。另外,远场测量还受周围电磁干扰、气候条件、有限测试距离、环境污染和物体的杂乱反射等 因素的影响,已经越来越难以适应现代卫星天线的测量要求。新一代的天线测量技术是以近场测量和紧缩场测量为代表的。近场测量技术利用探头在天线口面上做扫 描运动,测量口面上的幅度和相位,然后把近场数据转换成远场。由于近场测量只需测量天线口面上的场,就可避免远场测量的诸多缺点,而成为独立的一门测量技 术。
近场测量技术主要是指频谱近场测量技术,通过研究被测信号的频谱结构进行频谱分析,从而得到近场天线的各项参数。与远场测量不同的是,其通过采集天线近场区域辐射场的数据,经近场——远场变换,由计算机得到天线的远场特性。只要保证一定的幅度和相位测量精度,即可较为准确的得到远场特性。
频域近场测量中,信号源发射连续信号,适用于频域平面波谱分析,在时域近场测量技术中,信号源发射的是脉冲信号,用时域平面波谱分析比较合适。
1994 来,美国的Rome实验室的Thorkild R.Hasen和Arthur D.Yanghjian提出了时域平面近场测试方法,并推导出时域内的格林函数表达式和平面波普表达式,同时分析了探头误差分析与修正公式。国内在此领域 研究比较少,北京理工大学搭建了国内第一个时域近场测试系统。
天线的测量经历了一个从远场测量到近场测量的发展过程。远场测量是直接在天线的近场区对天线的电磁场进行测量,所以测量场地和周围范围电磁环境对测量精度影响比较大,对某些天线来说,要求测量距离要远大于2D2,其中D为被测天线的口径尺寸,λ为工作波长,而且对测量场地的反射电平、多路径和电磁环境干扰的抑制都提出了很高的要求,这些要求在远场条件下往往很难满足。随着测量设备和计算手段的不断进步,天线的电气特性可以在微波暗室内通过近场测量更方便、更精确的测得。
近 场测量是在天线近区范围内,求得天线的远场特性。由于其不受远场测试中的距离效应和外界环境的影响,故具有测试精度高、安全保密、可以全天候工作等一系列 优点,并且能很好的模拟和控制各种电磁环境,并通过合适的软件有效的补偿各种测量误差,其测量精度甚至优于远场测量,从而得到越来越多的应用,一直是人们 研究的重点课题,也是当前高性能天线测量的主要方法之一。
早在20世纪50年代,国外已经开始了天线近场测 量的研究。国内的近场测量的理论研究及实验探索开始于20世纪80年代,西安电子科技大学在1987年成功 研制了我国第一套天线近场测量系统。矢量网络分析仪作为天线近场测量系统的核心设备以及射频和微波产品性能的主要测试仪器,多年来在精度、速度、动 态范围和操作界面等方面都有较大的改进,对天线近场测量系统的性能优化起了很大的推动作用。
1 天线近场扫描法测量系统
近场测量方法包括:场源分布法、近场扫描法、缩距法、聚焦法和外推法等,这些方法各有其优缺点及适应范围。本文主要讨论近场扫描法来测量天线各项特性。
近 场扫描法是用一个特性已知的探头,在离开待测天线几个波长的某一表面进行扫描,测量天线在该表面离散点上的幅度和相位分布,然后应用严格的模式展开理论, 确定天线的远场特性。测量面可以是平面、柱面或球面,相应的近场扫描法称为平面、柱面或球面近场测量。从上世纪80 年代初,我们开始了对近场测量技术的研究,于1987年研制出了我国第一套近场测量系统。此后一直从事天线近场测量技术方面的研究及推广。
任何近场测量方法,都需在指定的曲面上规则地采集幅度和相位数据。给定曲面几何形状,数据和参考天线(探头)的特性,通过测量天线的近场特性,经近场-远场变换,由计算机处理、确定待测天线的远场特性。
最常用的扫
天线近场测量技 相关文章:
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)