微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 定量测量多通道串行数据系统中的串扰引起的抖动(二)

定量测量多通道串行数据系统中的串扰引起的抖动(二)

时间:01-12 来源:互联网 点击:
在参考文献[3]中推导了串扰引起的峰峰值BUj的关系式。该文基于的假设是干扰源(Aggressor)感应的串扰改变了被干扰信号的幅度,改变量的大小等于感应的串扰电压。受干扰对象(Victim)边沿移动的变化量由下面的等式(3)给出。

表示受干扰对象(Victim)上串扰感应的电压的峰峰值。该等式描述了当干扰源(Aggressor)的边沿和受干扰对象(Victim)的边沿一致的时候,感应的串扰引起的时序改变量。峰峰值抖动受限于干扰源(Aggressor)和受干扰对象(Victim)的边沿的重叠部分的大小。还有一个最大值限制等于干扰源(Aggressor)转换时间,当串扰电压大小超过一定程度时会达到这个上限。图7表示串扰引起的幅度及时序上的变化。垂直部分的边沿上的失真反应了串扰引起的抖动的限制。

图7的模型假设了感应的串扰电压是一个方波信号,这在现实中肯定是不真实的。串扰电压形状经过干扰源(Aggressor)和受干扰对象(Victim)之间的耦合的脉冲响应变得光滑些,这使得实际的串扰大小比等式(3)中预测的要小一些。另外等式(3)并不能预测当干扰源(Aggressor)和受干扰对象(Victim)不是完全同相时串扰对受干扰对象(Victim)边沿的影响。在这种情况下,受干扰对象(Victim)的边沿的形状被改变并带来了更大

图7 串扰引起的幅度变化示意图
或者更小的斜率。受干扰对象(Victim)的垂直噪声转换为抖动,越低的斜率带来越大的随机抖动,其关系式如下所示:

式中N和 是受干扰对象(Victim)的基线噪声和噪声引起的随机抖动,斜率是指待测量边沿的斜率。随机抖动是时序抖动和噪声抖动平方和的均方根。

抖动测量是通过对被测信号进行大量的连续边沿进行观察并分析测量结果的追踪图而得到的。额外的串扰带来的抖动造成了待测信号的时序和干扰源(Aggressor)的时序关系发生了变化。等式3和4预测了串扰带来的固有抖动和随机抖动的增加。固有抖动的增加量的大小正比于干扰源(Aggressor)和受干扰对象(Victim)的耦合程度,随机抖动的增加则正比于干扰源(Aggressor)和受干扰对象(Victim)的相位大小。

串扰测量的实验
为了测量串扰引起的抖动,我们利用Lattice的评估板ORT82G5 FPSC做了一组实验。SERDES输出两路速率都为3.125Gb/s的信号,输出到一对比较短的PCB线径上。这两路信号作为干扰源(Aggressor)和受干扰对象(Victim)。一对PCB走线的间距非常接近以产生串扰。利用TDR测量出线径之间耦合的插入损耗,如图8所示,插入损耗从频率点2.5GHz之后的很长频率范围内都是10dB。干扰源(Aggressor)和受干扰对象(Victim)都施加在线径的同一端,实现近端串扰测量(NEXT)。而且我们注意到,在DC时的耦合为零,随着频率的增加而增加。

图8 干扰源和受干扰对象线路之间的插入损耗

实验1- 受干扰对象(Victim)和干扰源(Aggressor)都是半速率的时钟码型
第一个实验采用1100…作为干扰源(Aggressor)的码型。干扰源(Aggressor)的电压总共有6种大小,测量结果和等式3的预测值一起比较,如表1所示。

表1 半时钟速率码型作为干扰源(Aggressor)的抖动测量结果
该实验中,干扰源(Aggressor)和受干扰对象(Victim)之间的相位尽可能保持为零。频谱方法(sp)和归一化NQ-Scale(nq)方法的测量结果和预测的结果都很接近,如图9所示。

图9 测量和理论计算的固有抖动和串扰电压大小之间关系
对于这种串扰信号非常简单的码型,频谱是由一系列离散的峰值点组成的,使用两种方法都能够容易准确测量,因为所有的干扰源(Aggressor)抖动大于抖动噪声的门槛值。抖动的频谱如图10所示,随机抖动维持为一个常量,这和预期的是一致的,因为考虑到干扰源(Aggressor)和受干扰对象(Victim)之间的相位是恒定的。

图10 3.125Gb/s的受干扰对象(Victim)的抖动频谱和半速率的时钟抖动
干扰源(Aggressor)和受干扰对象(Victim)之间有不同的相位关系时的随机抖动和固有抖动值测量结果如图11所示。

图11 固有抖动和随机抖动与干扰源(Aggressor)和受干扰对象(Victim)之间相差的关系。干扰源和受干扰对象的上升时间大约是50%的UI

实验2 – 受干扰对象(Victim)为时钟码型,干扰源(Aggressor)为非重复性的数据码型
第二个实验利用随机的数据码型作为干扰源(Aggressor),以测量随机串扰的影响。这种串扰比简单的时钟码型对抖动的影响复杂得多,因为干扰源(Aggressor)的边沿转换是随机发生的,除此之外,上升时间和干扰源(Aggressor)与受干扰对象(Victim)之间的相位误差也是变化的。
测量结果如表2和图12、13所示。NQ-Scale方法的随机抖动结果整体上要大一些,这是干扰源(Aggressor)的相位变化范围很大带来了受干扰对象(Victim)更小的上升时间所引起的必然结果。最显著的影响是当干扰源(Aggressor)的电平增加时,随机抖动增加,固有抖动减小。这和理论分析是一致的,因为干扰源(Aggressor)的抖动频谱由很多距离很近的线组成,而且由于频率分辨率有限,这些线看上去是连续的,可从图14清楚地看出来。图中显示的噪声基底具有和方波脉冲一致的形状。
根据等式3预测的抖动结果比NQ-Scale的都要大一些。为什么会这样? 等式1说明了串扰的大小和干扰源(Aggressor)的微分结果成正比。快沿比慢沿有更大的延迟,因此受干扰对象(Victim)和干扰源(Aggressor)之间的相位差更大。 因为相位误差越大,串扰引起的抖动的峰值就会越小,等式3的预测是基于串扰电压的峰峰得到的,因此结果总会偏大一些。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top