微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 光伏并网发电系统中的孤岛检测

光伏并网发电系统中的孤岛检测

时间:02-06 来源:互联网 点击:

fm—θsms=θm时对应的最大频率。

孤岛发生后,对于阻性负载ψ=0的情况,由于引入了偏移角θsms,使得fa增大;由式(6)可知,fa的增大又使得θsms增加,因此,该正反馈会使fa频率不断增加。当fa超出预设阈值时,系统将检测到孤岛的发生。

但是,对于并联谐振型rlc负载,sms也存在检测盲区的问题。当fa满足ψ=arctan[r(1/ωl-ωc)]=θsms=θmsin[π/2(fa-f0)/(fm-f0)]时(其中ω=2πf),且fa和电压未超出预设阈值时,系统将无法检测到孤岛的发生。

由上述分析可知,sms也可以减小无源孤岛检测的盲区,但该方法同样会影响pv系统输出的电能质量。此外,在rlc负载的相位增速快于pv系统,即dθload/df<|dθsms/df|时,sms方法失效[3]。

4.2.3 输出功率扰动检测

主动功率扰动法一般是对并网电流施加扰动,使其输出功率发生变化。当处于孤岛状态时,电流的波动使公共耦合点(pcc)点的电压发生变化,超过所设定的阈值就可以判断孤岛现象的发生。

对于输出为电流源型的逆变器,每隔一定时间减小并网电流的给定值(假设减小一半),即相当于添加了电流的扰动信号,在正常并网过程中,加入的电流扰动并不会改变pcc点的电压,它仍为电网电压。当电网断电时,pcc点的电压大小与并网电流和本地负载的特性有关,当到达扰动时刻,并网电流的变动使得pcc点电压发生变动,如果扰动值设定恰当,即使输入输出功率匹配,也能迅速检测出孤岛现象。

综上所述,主动式检测孤岛方法能够快速准确的检测孤岛现象,并能减小检测盲区的影响,但美中不足的是加入的扰动量一般会降低并网电流的质量,并对电网电压产生一定的干扰[4]。

5 电流注入式孤岛检测方法

检验孤岛检测方法有效性的重要指标就是检测盲区(ndz),即系统中有孤岛产生,却不能实时检测出来。原因之一就是孤岛现象发生后系统内的电压、频率和相位差都在允许的变化范围内,致使孤岛产生后,孤岛系统能稳定运行,孤岛检测方法不能有效检测出孤岛现象。由于孤岛检测盲区的存在,所以不管是主动式还是被动式孤岛检测方法都有一定的局限性,且随着并网系统容量的增大,这种不可检测的可能性就越大,危害也越严重。现在的孤岛检测方法为了减小不可检测的概率,一般都是多种检测方法一起使用,利用各种方法的互补性缩小检测盲区的范围,增大孤岛检测成功的概率。目前最常用的是主、被动式相结合的方法检测孤岛效应,经过综合分析比较,决定采用被动的过/欠压、过/欠频检测和主动的电流注入式相结合的孤岛检测方法。

电流注入式的孤岛检测方法是通过向并网逆变器控制系统的电流控制环节注入一个电流扰动信号,这个扰动信号可以是非常低频的且幅值非常小的一个正弦信号。在孤岛条件下,注入控制器的信号调整了pcc点处的电压幅值,并使得pcc点处的频率发生偏移[5]。

正常工作情况下,并网电流的基频成分流入负载rlc。若一个频率为fd(不等于基频)的正弦扰动信号通过控制系统的电流调节器注入到系统内,相应的扰动电流流入有低阻抗特性的公用电网中,当主电网断开时系统处于孤岛状态,具有低阻抗特性的电网回路不存在,扰动电流被迫流经负载。我们将这种方法用matlab软件包对电流注入式的孤岛检测方法进行simulink仿真分析,扰动电流是幅值为0.5a,初始相位为00,频率为5hz的正弦波,孤岛测试负载是按照品质因数q=1设计计算的并联rlc的值,选择把扰动电流注入到q轴电流控制器,电网在0.4s断开,仿真波形如图3所示,横轴代表时间,纵轴代表频率。可以看出,在0.4s以前,系统的频率稳定在50hz,0.4s时电网断开以后,频率发生震荡,在如此小的扰动信号作用下,频率也能发生较大的偏移,系统在孤岛状态下50ms左右就能检测出频率超限,响应时间完全符合国家要求的0.2s的标准。这种方法非常简单方便,在dsp控制系统中很容易实现,并且如此小的扰动信号对系统的稳定性几乎不产生影响,是一种非常有效的孤岛检测方法。

6 结束语

本文分析了孤岛状态产生的原理及其带来的负面效应,阐述了各种本地孤岛检测方法的工作原理,并就每种方法的ndz、适用范围、对系统电能质量及暂态响应的影响等进行了论述。提出了一种新型有效的电流注入式检测方法,该方法运行指标适应中国电力系统要求,基于仿真结果表明,此方法加快了检测速度,减小了检测盲区,还减少了对电力系统的谐波污染。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top