微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 光伏并网发电系统中的孤岛检测

光伏并网发电系统中的孤岛检测

时间:02-06 来源:互联网 点击:

频检测

该方法主要对电网的电压和频率进行监控,防止pv系统输出电压或者频率超出正常的工作范围。光伏并网发电系统并网运行过程中,除了要防,还要保证逆变器输出电压与电网同步,因此对电不断进行检测,以防止出现过压、欠压、过频或电压、频率进行检测的被动式孤岛检测方法只需进行判断,无需增加检测电路。该方法最大的缺陷是负载功率平衡时,电网断电后逆变器输出端变,从而出现孤岛检测的漏判。

4.1.2 相位突变检测

如图1所示,pv系统并网运行时通常工作在单位功率因数模式,即pv系统输出电流i0与a点电压(电网电压)同频同相。当电网断开后,出现了pv系统单独给负载供电的孤岛现象,此时,a点电压由i0和负载阻抗z所决定。由于锁相环的作用,i0与a点电压仅仅在过零点发生同步,在过零点之间,i0跟随系统内部的参考电流而不会发生突变,因此,对于非阻性负载,a点电压的相位将会发生突变,从而可以采用相位突变检测方法来判断孤岛现象是否发生。相位突变检测算法简单、易于实现。但当负载阻抗角ψ接近零,即负载近似呈阻性时,由于所设阈值的限制,该方法失效[1]。

4.1.3 电压谐波检测

如图1所示,pv系统并网工作时,其输出电流谐波将通过a点流入电网。由于电网的网络阻抗很小,因此a点电压的总谐波畸变率通常较低。电网断开后,pv系统输出的电流谐波流入负载。由于负载阻抗通常要比电网阻抗大得多,因此a点电压(谐波电流与负载阻抗的乘积)将产生很大的谐波,故可以通过检测电压谐波或谐波的变化来判断pv系统是否处于孤岛状态。但在实际应用中,由于非线性负载等因素的存在,电网电压谐波很大,谐波检测的动作阈值不易确定,因此,该方法有局限性。

  综上所述,被动式检测孤岛方法原理简单,容易实现,对电力系统无谐波影响等优点。但主要问题就是难以确定阈值,阈值既要大于正常运行时的值,又要小于等于孤岛时的值。由于并网逆变系统本身的输出也会有波动;电网自身也与理想情况有差异;某些用电负荷的启停也会对频率、电压产生影响;当用电负荷和并网系统功率匹配时,检测盲区较大;多台并网逆变系统同时运行时相互之间也会产生影响,干扰各自的孤岛检测。所以被动式的孤岛检测方法一般不单独使用,它通常作为辅助性的检测手段与主动式检测方法配合使用。

4.2 主动式(有源)检测方法

主动式检测方法是在逆变器的控制信号中加入很小的电压、电流或相位扰动信号,通过检测公共耦合点(ppc点)的响应情况判断是否发生孤岛现象的。正常工作时,由于电网的作用系统检测不到这些扰动,一旦电网断电,加入的扰动信号一般通过正反馈快速进行累积使电压、频率或相位超出允许的阈值范围,从而检测出孤岛现象的发生。主动式检测方法检测精度高,检测盲区小,但是由于加入了扰动信号,降低了逆变器的输出电流质量,增加了系统的总谐波失真度(thd)。常见的主动式(有源)检测方法有有源频率漂移(fad)检测,滑模频率偏移(sms)检测和输出功率扰动检测等方法。

4.2.1 有源频率漂移(fad)检测

有源频率偏移(afd)是目前一种常见的输出频率扰动孤岛效应检测方法。图2显示出其控制原理。该方法在开始时,通过控制逆变器提高输出电流的频率,在电网周期开始时发出正弦波电流,这样输出电流的频率和电网电压的频率存在一定的误差f(△f在并网标准允许范围内),这样半波后线路上的电压和逆变器电流过零点的时间就会存在一个固定的时间差tz,系统保持这一时间差和电网周期的比值△t。当电网正常工作时,由于逆变器电流被锁相环锁相,系统的比值△t保持固定值。当电网出现故障时,逆变器输出端的电压频率产生突变,而比值△t保持不变,这样就将不断地提高输出电流频率,该过程不断重复,直到逆变器输出电压频率超出门限值,从而触发孤岛效应的保护电路动作,切断逆变器与电网的连接。

对于并联的rcl负载,无论负载阻抗角大于或者小于零,在阻抗角和频率的偏移的相互影响下,其作用相互抵消,且此时频率和电压均未能超过预设的阈值,那么,系统将无法检测到孤岛现象的产生[2]。

4.2.2 滑模频率偏移(sms)检测

sms方法和afd方法类似,两者主要区别在于afd方法引入了误差△f,而sms方法引入了相角偏移θsms。sms方法下并网pv系统输出电流为

i0=imsin[2πfat+θsms] (5)

θsms=θmsin[π/2(fa-f0)/(fm-f0)] (6)

式中:

fa—a点负载电压的频率;

f0—电网频率;

θm—最大相移角;

fm—θsms=θm时对应的最大频率

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top