漫谈示波器的DDC(数字下变频)技术
存储深度 = 采样率 × 捕获时间 (7) 从(7)式可以看出,对于固定的存储深度,采样率和捕获时间成反比关系。如果想要增加捕获时间,就意味着采样率会下降,如果采样率降低,就会意味着信号发生混叠的风险。即对于传统数字示波器的频谱分析,如果要提高频率分辨力,那么就会面临信号混叠的风险,或者说只能进行低频率信号的分析;如果要进行高频率信号的分析,为了保证采样率,那么频率分辨力必然不能提高。 对于这种矛盾的关系,R&S示波器引入了DDC等一系列处理方式很好的解决了问题。 图16 R&S数字示波器频谱分析框图 图16显示了R&S示波器的频谱分析流程,图17显示了频谱分析设置框图。 图17 R&S数字示波器频谱分析设置 与传统数字示波器相比,R&S示波器引入了DDC模块,使信号在FFT之前先下变频到基带。设置中心频率Center frequency等效于设置本振频率,使信号下变频到基带,因此对基带信号进行重采样时,即使用较低的采样频率也不会造成信号混叠,从而在有限的存储空间中能采集最长时间的信号,因此频率分辨率(RBW)能够得到有效的保证。通过设置频率跨度Frequency SPAN,可以在硬件上将FFT的计算范围缩小到所设定的带宽内,而不用对整个频率范围都进行FFT计算,从而提高处理速度。此外,FFT的计算方式也采用分段重叠的计算方式,从而能够更好的体现出频谱的细节。总之,与传统数字示波器频谱分析相比,采用R&S示波器频谱分析结构主要具有如下几点好处: 对此我们进行以下实验。 使用信号源产生频率为3GHz的单频正弦波信号。如果使用传统示波器频谱分析方法,采样率必须设置为6GSa/s以上信号才不至于混叠,那么根据公式(6)和(7),在有限的存储空间内必不能得到很好的RBW。但如果使用R&S示波器频谱分析方法,设置如图18所示: 图18 R&S数字示波器频谱分析设置 中心频率设为3GHz,RBW设为5kHz,窗函数采用Blackman Harris窗。频谱分析结果如图19所示。我们注意到,由于采用了DDC结构,采样率设置为了2.5GSa/s,并不需要满足信号频率的2倍以上关系,因为此时的采样率在频谱分析中实际为重采样率。在频域测量结果中可以看出,信号频率为3GHz,与信号源输出频率一致。因此,可以看出使用R&S示波器频谱分析结构,即使对于高频率的信号,仍然能够有很好的频率分辨率。 图19 R&S数字示波器频谱分析结果 4 小结 通过以上讨论可以看出,R&S数字示波器采用DDC技术,无论是在射频信号采集分析(I/Q解调)还是在频域分析中,都能最大限度的利用示波器宝贵的存储空间,将信号的多域联合分析发挥的淋漓尽致。
•由于采用硬件处理等方式,频谱分析速度快,能做到实时的频谱分析;
•频谱分析设置同频谱分析仪类似,直接对频谱参数进行设置,而不再需要进行复杂的时域参数调整;
•具有大的动态范围;
•即本文讨论的重点,由于采用了DDC结构,可以将信号先下变频到基带,再以较低的采样频率对其进行重采样,从而在有限的存储空间内能够采集最长时间的信号,根据公式(6)可以很好的保证频率分辨率(RBW)。即不用再在信号频率与RBW之间纠结折衷的方案。
示波器DDC数字下变 相关文章:
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)