微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 在线检测设备精度评定中相关分析方法

在线检测设备精度评定中相关分析方法

时间:02-27 来源:互联网 点击:

表3

图6 为按照表3 比对实测数据绘制的三组相应曲线,直观地反映了在线检测设备与PCMM 对工件测点7 测得结果的关联状况。

首先,根据表3 中22 个样本的实测数据,按前面所述相关分析方法,求出工件上点7 的x、y、z 坐标分别由在线检测系统和PCMM 测得的对应数据之间的相关系数r,以确认其线性相关程度。计算结果为:

r7x =0.935, r7y=-0.950, r7z=0.941

这就说明,两者之间的相关程度很高。通过对另外12 个测点的比对测量,以及对两组实测结果的相关分析,获得了其余36 个相关系数r。全部39 项被测量的线性相关水平如表4 所示。表4 表明,所采用的在线检测设备与关节臂坐标测量机比对测量的结果为强相关。需要指出的是,在通过局部/全局标定建立测量过程中的车身坐标系时,有几个测点的Y 坐标方向设置反了,造成对比测量的结果分析呈现负相关,这从图5 中的曲线图7—Y—Y 可清楚看出。但在发现后由专业人员予以更正。

当然,在做以上这些工作之前,还是应当根据两组实测值的比对结果,对在线检测的实际结果设备各项被测量是否均达到规定精度指标作出评估。底架焊接总成与多数轿车车身覆盖件相似,其上的39 项被测量的公差为±1mm,精度AC 则要求:AC≤20%·T,实测结果表明。包括测点7 的3 项在内,所有参数均超出了这一范围,因此,进行上述线性相关分析,并在确认两种检测设备的测量结果有可比性,并呈强相关之后再采取相应的修正、补偿才是有必要和有价值的。


图6

表4

参照前面介绍的做法,如同实例1 中的步骤2 那样,先求出对应于每个被测量j 的修正值△j,再将它
们逐个输入在线检测设备的控制计算机中,实施对定值系统误差的补偿。然后,通过若干样本又一次的比对测量予以验证,结果表明了达到预期的目标。39 项被测参数经在线检测系统测量,与PCMM 之间的差别在[-0.2mm,+0.2mm]范围内。

但需要指出的是,设置在车身生产线上的这台设备在对底架焊接总成进行检测时所显现的出的定值系统误差,与实例1 的情况不同,主要在成因上。从前面分析可知,后者主要是由于两种测量方法的差别引起的,由于比较单一,故比对测量后的偏差较接近。而造成这套车身在线检测系统与PCMM 两者测量结果差别的因素就多些,除测量方法不同是主要原因外,定位误差也是一个重要因素。实施在线检测时,工件由二维圆销和一维削边销定位,但因处在生产自动线上,故这一过程不是人为完成,加上由覆盖件的性质所决定,定位误差带来的影响就比实例1 大,当然这里既有“定值”成分,也有“随机”成分,但结果都造成了两种检测设备比对测量的差别在较大范围内变动。无疑,要从根源上减少甚至消除这些误差成因是很困难的,特别是那些由被测件自身以及工艺特点所决定的因素。

毫无疑问,在评定一台检测设备时采用对比测量并不鲜见,可谓常用方法。但如何科学、合理地对待测得数据,进而采取相应的后续措施改善其精度水平,事实上在过去并未很好解决,正因如此,在线检测设备中的多参数综合测量机(仪)的精度评定才被认为是个棘手问题。通过本文前二节的表述和最后两个实例,说明了以数理统计中的相关分析为基础,再结合必要的数据处理和修正、补偿,能较真实地复现一台在线检测设备的精度状况,为客观地作出评价提供依据。所推出的这种方法既规范,又有很强的可操作性,无论对设备制造商还是用户都有价值。

参考文献
1 罗宁,张玉萍,任柏林. 微机综合测量系统的误差因素分析. 工具技术. 1999 No.1
2 朱正德. 在线检测设备评定方法的建立与实践. 计量技术. 2001,No.10
3 朱正德. 机械加工设备能力的评定指标——机器能力指数 . 汽车标准化,2002 No.1
4 陈功振. 定值系统误差的判断及消除方法. 计量技术. 2002,No.8(end)

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top