四种射频器件设计的TCAD仿真方法比较分析
量限制在7~11次。达到11次的内存要求是4~8GB,还不包括器件仿真所需的内存。可以使用需要较少内存的迭代解决方案。由于资源有限,这些内容要求导致了谐波次数限制,多级放大器的分析目前不能采用这种方法。扫描可能需要几个小时,而实际器件所需的时间可能会更长。
第三种方法是Loechelt于2000年研究的,这种方法是计算负载拉升(CLP)。在该方法中,大信号瞬态的仿真(或测量)可用于描述本征器件,并用工具将所有集中在一起,进行电路评估。这种方法有几个优点,一旦构成用于描述本征器件的数据集,它就可以用在多个电路仿真中。当然,这种方法也有缺点,由于RF工作台构建在CLP工具内部,因此只能用于那些在这种工具中执行的设计。
到目前为止,这些方法的问题是速度、RF工作台的功能、性能和设置时间,如表1所述。
表1:TCAD数据的大信号仿真四种方法比较。
第四种方法是从TCAD仿真数据中提取紧凑模型。该方法的主要优势在于基于仿真的模型采用相同的程序、提取方法,并能采用与基于测量的模型相同的设计。这就允许使用已经开发出来的非常强大的RF电路仿真功能和原来的RF设计。缺点是运行TCAD需要时间,提取模型需要时间,以及采用的紧凑模型有一定限制。这是一种重要限制,因为TCAD仿真可能包含的物理特性不能反映在紧凑模型中。这种缺陷有两种补救措施,一种是创建具有更佳物理特性的用户定义的模型版本,另一种是采用基于表格的模型。为了让这种方法具有实用性,必须创建自动提取,实现大量器件模型的快速提取。
由于我们从图1中知道了最佳性能出现在不确定的源和负载匹配中,因此必须在整个源和负载层面进行仿真,以搜索到最高性能点。假设有60个源状态和60个负载状态必须交替搜索,就有可能要完成300次左右的功率扫描才能确定最高性能点。
大信号TCAD仿真示例
TCAD仿真适用于使用Synopsys工具的器件。模型的提取采用从那些已仿真的数据中自动提取的方法,并对图2中显示的正向、反向Gummel、I/Vs和CV特征进行比较。
图2:正向、反向Gummel、I/V和CV特征的比较,其中TCAD数据为蓝色,模型数据为红色。
TCAD数据显示为蓝色,模型数据显示为红色。两者相符显示该模型准确地反映了原始的TCAD数据。图3显示的是S特征参数的比较。良好的匹配再次表明该模型准确地反映了TCAD数据。
图3:S-参数特征的比较,其中TCAD数据为蓝色,模型数据为红色。
该模型在类似于图1所示的电路中使用。采用反复扫描源和负载平面的算法,选择出最佳性能的源和负载匹配。图4中比较了由此产生的类似设计器件测量出的数据之间的负载平面效率,黑线为参考测量数据,红线是采用该模型的仿真数据。
图4:效率等高线。
最大效率点的功率扫描与一个类似设计测试器件的测量数据的比较如图5所示。
图5:最高效率功率扫描图。
该功率扫描图显示了效率、输出功率和增益的出色预测。此外,比较还显示了线性误差矢量幅度(EVM)、邻信道功率(ACP)和相间信道功率(ALT)的测量结果。这些测量显示,增益和相位关系得到了很好的仿真。对于目前的无线通信器件设计来说,线性特征、EVM、ACP和ALT的准确预测非常重要。