利用电池监测系统来提高UPS的可靠性
电池的使用寿命有限。如果环境条件(尤其温度)超出最适宜的范围,那么电池的使用寿命会大大缩短。大多数设备内的电池一般会根据保修规定的固定间隔时间(通常每5年)定期更换。但是这种方法也有缺陷,那就是电池在预期环境条件范围之外使用时会很快没电,而保养良好的电池使用寿命会更长。
现代的UPS要求提供更高的功率输出,因此需要很多电池。在大型电池组中,单个电池失效会导致整组电池失效。大型和中型UPS会进行冗余,以便确保电池组失效不会导致整个UPS失效。与此同时,UPS会继续运行,输出的峰值电流会减小,系统采用UPS能够运行的时间会缩短。而且,失效电池还会对电池组中的其他电池组块产生影响,从而缩短这些电池组块的使用寿命。
电池监测和保养代表了与运行UPS相关的一项重要成本。一般来说,工程师会定期(可能每个月)到现场巡查,对装置内电池的电气特性进行测量。工程师通常会测量电池的电压,以鉴别电池是否超范围使用,如果超出范围则进行更换。输出电压未必是电池失效的良好指标,因此在两次常规巡查之间电池可能会发生故障,工程师需要进行额外的巡查。
对电池进行在线监测一方面减少了工程师实际到现场检查每块电池状态的时间,提高了现场巡查的效率,因此缩减了成本;另一方面,在线监测还实现了预防性维护。通过对可能的故障进行鉴别,工程师在常规巡查过程中即可以换出故障电池,从而确保装置运行更可靠,工程师也无需再进行紧急巡查。
莱姆使用SenTInel电池监测系统对配有800 kVA UPS的广播设备中的电池进行测量。图1给出了一组电池组中的几个电池的输出电压。在这个例子中,每个电池组具有200 块单体电池,能够提供大440V的电压。电压变化很大,主要是由于电池条件配置不正确,这一点将在后文进行讨论。
图形清晰地显示了一块电池输出2 V电压,而不是常规的 2.2 V电压。尽管一块电池产生的电压比预期的电压要低,但是差别却相当小而且很稳定。这种性能很常见,使得采用输出电压作为预测失效的指标不再可靠,这是由于电压值可以保持在阈值范围之内,因此不会触发报警器。
图1 电池输出电压
在这个例子中,采用了Sentinel电池监测系统对预定保养方案的有效性进行评估,目的并非是提示潜在的问题。由于未采取任何措施,图2显示了10月9日电池彻底失效的情形。请注意,在电池电压降低到0.7 V之前,故障电池的电压还是保持不变,未出现任何可能失效的迹象。11月19日更换电池后,电池电压恢复到正常值。
图2 电池失效
由于在电池失效之前输出电压并未出现任何变化,因此输出电压并不是可能失效的良好指标。电池的另外一个特征参数阻抗是一个更好的指标,如图3所示。该图形举例说明了6月份上升的阻抗在7月初提高超过20%。变化趋势容易检测:对阻抗进行测量可在电池失效前三个月就能发现问题。如果客户使用了阻抗数据,在电池变质导致失效之前的常规预防性保养过程中就能更换电池。
图3 电池阻抗预测失效
对电池进行长期监测为改善UPS的可靠性提供了更多有用的信息。例如,在图1中,我们可以明显地看到有大量的充电/放电过程(电压轨迹上的多个尖峰所示)。尽管所有的电池都需要进行调理,但是电池放电太过频繁,每个月都要放电4到5次。在一些电池调理延长使用寿命的同时,太多的放电过程会缩短使用寿命:一次正常的配置每年仅会循环两到三次。通常情况下,电池质保使用寿命为20到50个循环。在这种情况下,我们在考虑电池在仅仅几个月中就可能超过这个质保过程,而每5年更换一次电池的方案可能意味着电池需要经历比设计承受的放电过程多几倍的放电过程。
该现场频繁的充电/放电过程是由于安装工将UPS留置在试运行模式而造成,这种模式使得电池不断地循环充电以便进行测试。这个出乎意料的常见错误可能极大地缩短电池使用寿命。在工程师对连续自动监测的现场进行巡查过程中,错误配置可能表现不明显,但是产生的问题却很明显。
电池使用寿命缩短的另外一个原因是高温
- 三种充电措施提高apc ups电源性能(12-09)
- UPS电源与传统冗余电源的区别(12-09)
- 基于双变换UPS的全桥IGBT技术研究(12-09)
- UPS电源急需信息化协助克服难题(12-09)
- UPS给出额定有功功率的误区(12-09)
- 飞轮储能技术在UPS系统中的应用(12-09)