微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > Buck变换器的电流取样电阻放置位置分析

Buck变换器的电流取样电阻放置位置分析

时间:09-14 来源:互联网 点击:

此电流取样的精度差。峰值电流模式容易受到电流信号前沿尖峰干扰。在占空比大于 50%时需要斜坡补偿。

2 电流取样电阻在续流端的 Buck 变换器

前面的讨论知道:在每个开关周期,续流回路即低端的开关管流过的电流波形为下降阶段的梯形状波形。对于这种电流模式常称为谷点电流模式。和峰值电流模式一样,谷点电流模式反馈也有二个环路:一个电压外环,另一个是电流的内环。其工作原理如下:高端的主开关管开通,电感激磁,电流线性上升;高端 MOSFET的导通一段固定的时间,此时间由 PWM 设定。当高端 MOSFET 关断后,低端MOSFET 导通,此时电感开始去磁,电流线性下降。注意到低端 MOSFET 的电流随着时间线性下降,电流检测电阻的电压信号也线性下降,由于此时电压外环的输出电压信号低于电流检测电阻的电压,电流比较器输出为低电平。当电流检测电阻的电压信号继续下降,直到等于电压外环的输出电压信号时,电流比较器的输出翻转,从低高电平翻转为高电压,逻辑控制电路工作,关断低端的续流开

关管的驱动信号,高端的主开关管开通,此时电感开始激磁,电流线性上升,进入下一个周期,如此反复。

注意的是:高端的主开关管和低端的同步续流管之间要设定一定的死区时间防止上下管的直通。

谷点电流模式具有宽输入电压、低占空比、易检测电流和快速负载响应。在占空比小于 50%时需要斜坡补偿。负载响应快速的原因在于谷点电流模式从当前的脉冲周期响应,而峰值电流模式从下一个脉冲周期响应。当输入和输出电压变化时,若高端 MOSFET 的导通的时间固定不变化,那么系统将工作在变频模式,不利于电感的优化工作。因此在 PWM 内部需要一个前馈电路,使高端 MOSFET 的导通时间随输入电压成反比的变化,随输出电压成正比的变化,从而维持在输入电压变化和负载变化时,变换器近似的工作于定频方式。

图2:电流取样电阻在续流端的同步Buck变换器

如果采用低端续流功率 MOSFET 的导通电阻作为电流取样电阻,这样可以省去额外的电流取样电阻,从而提高效率。同样,由于 MOSFET 的导通电阻值比较分散,而且随温度的变化也会在较大范围内波动,因此电流取样的精度差。但这种配置通常应用于高输入电压,低输出电压及大输出电流的变换器。

3 电流取样电阻在输出端的 Buck 变换器

前面的讨论知道:输出回路电感的电流波形为包含上升和下降阶段的锯齿状波形。因此电流取样电阻在输出端,变换器可以工作于谷点电流模式,也可工作于峰值电流模式。但通常这种配置工作于峰值电流模式。

图3:电流取样电阻在输出端的同步Buck变换器

由于输出电压低,那么电流比较器的两个输入管脚的共模电压较低,因此可以使用低输入共模电压的差动放大器,提高电流检测的精度,降低噪声。这种配置另一个大的优点是可以使用电感的DCR作为电流检测电阻。要注意的是,在电感值和饱和电流满足整个输入电压范围和输出负载电流范围的前提下,对电感的DCR有一定的限制,因而在一些应用中需要定制电感。此外,电流比较器的输入阻抗要大,两个输入管脚的偏置电流要小,从而提高使用DCR作为电流检测电阻时的检测精度。相关的滤波元件也在设计作相应的匹配,如下图所示。

图4:电感DCR作电流取样电阻的滤波网络

通常,由于DCR值通常大于设计要求的电阻值,因此需要一个电阻分压器来得到所需要的电压值:

另外,为了满足滤波器时间的要求,必须使:

事实上,在设计时还要考虑到温度变化时,DCR也会发生变化,这将会影响电流取样的精度差。在有些PWM的设计中,也会将电流比较器的参考基准电压设计为可调整,从而增加电感使用的通用性。

4 结论

①电流取样电阻放在输入端可配置为峰值电流模式,使用高端MOSFET导通电阻作电流取样电阻可提高效率,但影响电流取样精度。

②电流取样电阻放在续流端可配置为响应速度快的谷点电流模式,使用续流MOSFET导通电阻作电流取样电阻可提高效率,但影响电流取样精度。

③电流取样电阻放在输出端可配置为峰值和谷点电流两种模式,常用峰值电流模式。使用电感DCR作电流取样电阻可提高效率,但设计和调试变得复杂,同时影响电流取样精度。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top