微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 一种简单的IGBT驱动和过流保护电路

一种简单的IGBT驱动和过流保护电路

时间:12-23 来源:互联网 点击:

动电源的功耗,门极正反向偏置电压之差为△Vge,工作频率为f,栅极电容为Cge,则电源的最少峰值电流为:

  

  驱动电源的平均功率为:

  

  2 IGBT的过流保护

  IGBT的过流保护就是当上、下桥臂直通时,电源电压几乎全加在了开关管两端,此时将产生很大的短路电流,IGBT饱和压降越小,其电流就会越大,从而损坏器件。当器件发生过流时,将短路电流及其关断时的I—V运行轨迹限制在IGBT的短路安全工作区,用在损坏器件之前,将IGBT关断来避免开关管的损坏。

  3 IGBT的驱动和过流保护电路分析

  根据以上的分析.本设计提出了一个具有过流保护功能的光耦隔离的IGBT驱动电路,如图2。

  

  图2 IGBT驱动和过流保护电路

  图2中,高速光耦6N137实现输入输出信号的电气隔离,能够达到很好的电气隔离,适合高频应用场合。驱动主电路采用推挽输出方式,有效地降低了驱动电路的输出阻抗,提高了驱动能力,使之适合于大功率IGBT的驱动,过流保护电路运用退集电极饱和原理,在发生过流时及时的关断IGBT,其中V1.V3.V4构成驱动脉冲放大电路。V1和R5构成一个射极跟随器,该射极跟随器提供了一个快速的电流源,减少了功率管的开通和关断时间。利用集电极退饱和原理,D1、R6、R7和V2构成短路信号检测电路.其中D1采用快速恢复二极管,为了防止IGBT关断时其集电极上的高电压窜入驱动电路。为了防止静电使功率器件误导通,在栅源之间并接双向稳压管D3和D4。如是IGBT的门极串联电阻。

  正常工作时:

  当控制电路送来高电平信号时,光耦6N137导通,V1、V2截止,V3导通而V4截止,该驱动电路向IBGT提供+15V的驱动开启电压,使IGBT开通。

  当控制电路送来低电平信号时,光耦6N137截至,VI、V2导通。V4导通而v3截止,该驱动电路向IBGT提供-5v的电压,使IGBT关闭。

  当过流时:

  当电路出现短路故障时,上、下桥直通此时+15V的电压几乎全加在IGBT上.产生很大的电流,此时在短路信号检测电路中v2截止,A点的电位取决于D1、R6、R7和Vces的分压决定,当主电路正常工作时,且IGBT导通时,A点保持低电平,从而低于B点电位。所有A1输出低电平,此时V5截止,而c点为高电平,所以正常工作时。输入到光耦6N137的信号始终和输出保持一致。当发生过流时,IGBT集电极退饱和,A点电位升高,当高于B电位(即是所设置的电位)时,即是当电流超过设计定值时,A1翻转而输出高电平,V5导通,从而将C点的电位箝在低电位状态,使与门4081始终输出低电平,即无论控制电路送来是高电平或是低电平,输人到光耦6N137的信号始终都是低电平,从而关断功率管。从而达到过流保护。直到将电路的故障排除后,重新启动电路。

  4 仿真与实验

  本设计电路在orCAD软件的仿真图形如下:

  向驱动电路输入,高电平为+15v,低电平为-5v的方波信号。IGBT的输出波形如图3所示:

  

  图3 IGBT输出信号

  根据前面的原理和分析,该电路的实际电路输出波形如图4所示:

  

  图4实际电路输出波形

  5 结论

  (1)该驱动电路能够为IGBT提供+15v和-5V驱动电压确保IGBT的开通和关断。

  (2)具有过流保护功能,当过流时,保护电路起作用,及时的关断IGBT,防止IGBT损坏。

  (3)本电路的可根据负载的需要动态调节最大电流,可以有很广的使用范围。

  (4)本设计采用分立元件组成驱动电路,降低整个系统的成本。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top